Effect of Wheat Straw Ash on Fresh and Hardened Concrete Reinforced with Jute Fiber

In the present era, a number of researchers are using either industrial or agricultural priceless products as a basic source of raw materials for the construction industry. These waste products are economical and helpful in producing a sustainable environment and reducing environmental pollution, wh...

Full description

Bibliographic Details
Main Authors: Naraindas Bheel, Samiullah Sohu, Paul Awoyera, Ashok Kumar, Suhail Ahmed Abbasi, Oladimeji B. Olalusi
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Advances in Civil Engineering
Online Access:http://dx.doi.org/10.1155/2021/6659125
Description
Summary:In the present era, a number of researchers are using either industrial or agricultural priceless products as a basic source of raw materials for the construction industry. These waste products are economical and helpful in producing a sustainable environment and reducing environmental pollution, which is called handling waste products. However, this research work was conducted on concrete containing 0.25%, 0.50%, 0.75%, and 1% of jute fiber as reinforcement material and 10%, 20%, 30%, and 40% of wheat straw ash (WSA) as replacement for fine aggregates. Moreover, the separate and combined effect of jute fiber and WSA as a replacement for sand ingredient in concrete is to determine the fresh and hardened properties of concrete. In this research, a number of concrete samples were prepared with 1 : 1.5 : 3 mix proportion at 0.54 water-cement ratio and cured at 28 days. The experimental outcomes displayed that the compressive, splitting tensile, and flexural strengths improved by 32.88 MPa, 3.80 MPa, and 5.30 MPa at 0.50% of jute fiber along with 30% of WSA at 28 days consistently. Similarly, the modulus of elasticity was developed while the dosages of jute fiber and WSA increased together in concrete. Moreover, the permeability and workability of concrete were reduced while utilized jute fiber and WSA increased together in concrete.
ISSN:1687-8086
1687-8094