Coretractable modules relative to a submodule

Let $R$ be a ring and $M$ a right $R$-module. Let $N$ be a proper submodule of $M$. We say that $M$ is $N$-coretractable (or $M$ is coretractable relative to $N$) provided that, for every proper submodule $K$ of $M$ containing $N$, there is a nonzero homomorphism $f:M/K\rightarrow M$. We present som...

Full description

Bibliographic Details
Main Authors: Ali Reza Moniri Hamzekolaee, Yahya Talebi
Format: Article
Language:English
Published: Yildiz Technical University 2019-05-01
Series:Journal of Algebra Combinatorics Discrete Structures and Applications
Online Access:http://jacodesmath.com/index.php/jacodesmath/article/view/241
id doaj-7a20824043514457a729b038263859d4
record_format Article
spelling doaj-7a20824043514457a729b038263859d42020-11-24T21:32:49ZengYildiz Technical UniversityJournal of Algebra Combinatorics Discrete Structures and Applications2148-838X2019-05-0162120Coretractable modules relative to a submoduleAli Reza Moniri Hamzekolaee0Yahya Talebi1Assistant Professor of Algebra, Ring and Module Theory, Department of Math University of MazandaranAssociate Professor of Algebra, Ring and Module Theory, Department of Math University of MazandaranLet $R$ be a ring and $M$ a right $R$-module. Let $N$ be a proper submodule of $M$. We say that $M$ is $N$-coretractable (or $M$ is coretractable relative to $N$) provided that, for every proper submodule $K$ of $M$ containing $N$, there is a nonzero homomorphism $f:M/K\rightarrow M$. We present some conditions that a module $M$ is coretractable if and only if $M$ is coretractable relative to a submodule $N$. We also provide some examples to illustrate special cases.http://jacodesmath.com/index.php/jacodesmath/article/view/241
collection DOAJ
language English
format Article
sources DOAJ
author Ali Reza Moniri Hamzekolaee
Yahya Talebi
spellingShingle Ali Reza Moniri Hamzekolaee
Yahya Talebi
Coretractable modules relative to a submodule
Journal of Algebra Combinatorics Discrete Structures and Applications
author_facet Ali Reza Moniri Hamzekolaee
Yahya Talebi
author_sort Ali Reza Moniri Hamzekolaee
title Coretractable modules relative to a submodule
title_short Coretractable modules relative to a submodule
title_full Coretractable modules relative to a submodule
title_fullStr Coretractable modules relative to a submodule
title_full_unstemmed Coretractable modules relative to a submodule
title_sort coretractable modules relative to a submodule
publisher Yildiz Technical University
series Journal of Algebra Combinatorics Discrete Structures and Applications
issn 2148-838X
publishDate 2019-05-01
description Let $R$ be a ring and $M$ a right $R$-module. Let $N$ be a proper submodule of $M$. We say that $M$ is $N$-coretractable (or $M$ is coretractable relative to $N$) provided that, for every proper submodule $K$ of $M$ containing $N$, there is a nonzero homomorphism $f:M/K\rightarrow M$. We present some conditions that a module $M$ is coretractable if and only if $M$ is coretractable relative to a submodule $N$. We also provide some examples to illustrate special cases.
url http://jacodesmath.com/index.php/jacodesmath/article/view/241
work_keys_str_mv AT alirezamonirihamzekolaee coretractablemodulesrelativetoasubmodule
AT yahyatalebi coretractablemodulesrelativetoasubmodule
_version_ 1725955716144955392