The Acute Effects of Unilateral Ankle Plantar Flexors Static- Stretching on Postural Sway and Gastrocnemius Muscle Activity During Single-Leg Balance Tasks

The aim of this study was to investigate the acute effects of unilateral ankle plantar flexors static- stretching on surface electromyography (sEMG) and the center of pressure (COP) during a single-leg balance task in both lower limbs. Fourteen young healthy, non-athletic individuals performed unipo...

Full description

Bibliographic Details
Main Author: Bráulio N. Lima, Paulo R.G. Lucareli, Willy A. Gomes, Josinaldo J. Silva, Andre S. Bley, Erin H. Hartigan, Paulo H. Marchetti
Format: Article
Language:English
Published: University of Uludag 2014-09-01
Series:Journal of Sports Science and Medicine
Subjects:
Online Access:http://www.jssm.org/research.php?id=jssm-13-564.xml
Description
Summary:The aim of this study was to investigate the acute effects of unilateral ankle plantar flexors static- stretching on surface electromyography (sEMG) and the center of pressure (COP) during a single-leg balance task in both lower limbs. Fourteen young healthy, non-athletic individuals performed unipodal quiet standing for 30s before and after (stretched limb: immediately post-stretch, 10 and 20 minutes and non-stretched limb: immediately post-stretch) a unilateral ankle plantar flexor static- stretching protocol [6 sets of 45s/15s, 70-90% point of discomfort (POD)]. Postural sway was described using the COP area, COP speed (antero-posterior and medio-lateral directions) and COP frequency (antero-posterior and medio-lateral directions). Surface EMG (EMG integral [IEMG] and Median frequency[FM]) was used to describe the muscular activity of gastrocnemius lateralis. Ankle dorsiflexion passive range of motion increased in the stretched limb before and after the static-stretching protocol (mean ± SD: 15.0° ± 6.0 and 21.5° ± 7.0 [p < 0.001]). COP area and IEMG increased in the stretch limb between pre-stretching and immediately post-stretching (p = 0.015 and p = 0.036, respectively). In conclusion, our static- stretching protocol effectively increased passive ankle ROM. The increased ROM appears to increase postural sway and muscle activity; however these finding were only a temporary or transient effect.
ISSN:1303-2968