Study on the Progressive Deterioration of Tunnel Lining Structures in Cold Regions Experiencing Freeze–Thaw Cycles

The linings of tunnels in cold regions with long service lives usually have cracks, with parts of the structure peeling and falling off, which seriously threatens the tunnel safety and operation. The unsaturated freeze–thaw cycle of concrete, which is the main cause of structural deterioration, has...

Full description

Bibliographic Details
Main Authors: Peng Xu, Yimin Wu, Le Huang, Kun Zhang
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/13/5903
Description
Summary:The linings of tunnels in cold regions with long service lives usually have cracks, with parts of the structure peeling and falling off, which seriously threatens the tunnel safety and operation. The unsaturated freeze–thaw cycle of concrete, which is the main cause of structural deterioration, has not received much research attention. During the service life of tunnels in cold regions, unsaturated freeze–thaw cycles deteriorate the quality of the concrete, and its degree presents a gradual distribution in the circumferential and longitudinal directions. An experiment system was adopted to simulate the distribution of the progressive deterioration of tunnel lining concrete. The test results of the temperature field of the model show the distribution law of freeze–thaw cycles, and the gradual deterioration of the lining concrete was realized. Then, the bearing capacity of the model was tested after the progressive deterioration. The results show that the ultimate load of the model decreases with an increase in the number of freeze–thaw cycles. Finally, a numerical simulation was carried out to discuss the influence of the gradual deterioration of the lining. The gradual deterioration of lining concrete will encourage the gradual development of cracks, leading to serious cracking of the lining structure and even block spalling. Through this study, we hope to provide useful information for the prevention and control of tunnel frost damage in cold regions.
ISSN:2076-3417