Photoacoustic thermal characterization of low thermal diffusivity thin films

The photoacoustic measurement technique is a powerful yet underrepresented method to characterize the thermal transport properties of thin films. For the case of isotropic low thermal diffusivity samples, such as glasses or polymers, we demonstrate a general approach to extract the thermal conductiv...

Full description

Bibliographic Details
Main Authors: K. Herrmann, N.W. Pech-May, M. Retsch
Format: Article
Language:English
Published: Elsevier 2021-06-01
Series:Photoacoustics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2213597921000082
id doaj-7a5a4fd80fcf4e0da61d8ddb35d0d96c
record_format Article
spelling doaj-7a5a4fd80fcf4e0da61d8ddb35d0d96c2021-05-26T04:26:34ZengElsevierPhotoacoustics2213-59792021-06-0122100246Photoacoustic thermal characterization of low thermal diffusivity thin filmsK. Herrmann0N.W. Pech-May1M. Retsch2Department of Chemistry, Physical Chemistry 1, University of Bayreuth, 95440 Bayreuth, GermanyBundesanstalt für Materialforschung und -prüfung (BAM), 12200 Berlin, GermanyDepartment of Chemistry, Physical Chemistry 1, University of Bayreuth, 95440 Bayreuth, Germany; Corresponding author.The photoacoustic measurement technique is a powerful yet underrepresented method to characterize the thermal transport properties of thin films. For the case of isotropic low thermal diffusivity samples, such as glasses or polymers, we demonstrate a general approach to extract the thermal conductivity with a high degree of significance. We discuss in particular the influence of thermal effusivity, thermal diffusivity, and sample layer thickness on the significance and accuracy of this measurement technique. These fundamental thermal properties guide sample and substrate selection to allow for a feasible thermal transport characterization. Furthermore, our data evaluation allows us to directly extract the thermal conductivity from this transient technique, without separate determination of the volumetric heat capacity, when appropriate boundary conditions are fulfilled. Using silica, poly(methyl methacrylate) (PMMA) thin films, and various substrates (quartz, steel, and silicon), we verify the quantitative correctness of our analytical approach.http://www.sciencedirect.com/science/article/pii/S2213597921000082Thermal conductivityThermal waveThermal transport metrologyPhotoacoustic characterizationEffusivity mismatchThermal diffusivity
collection DOAJ
language English
format Article
sources DOAJ
author K. Herrmann
N.W. Pech-May
M. Retsch
spellingShingle K. Herrmann
N.W. Pech-May
M. Retsch
Photoacoustic thermal characterization of low thermal diffusivity thin films
Photoacoustics
Thermal conductivity
Thermal wave
Thermal transport metrology
Photoacoustic characterization
Effusivity mismatch
Thermal diffusivity
author_facet K. Herrmann
N.W. Pech-May
M. Retsch
author_sort K. Herrmann
title Photoacoustic thermal characterization of low thermal diffusivity thin films
title_short Photoacoustic thermal characterization of low thermal diffusivity thin films
title_full Photoacoustic thermal characterization of low thermal diffusivity thin films
title_fullStr Photoacoustic thermal characterization of low thermal diffusivity thin films
title_full_unstemmed Photoacoustic thermal characterization of low thermal diffusivity thin films
title_sort photoacoustic thermal characterization of low thermal diffusivity thin films
publisher Elsevier
series Photoacoustics
issn 2213-5979
publishDate 2021-06-01
description The photoacoustic measurement technique is a powerful yet underrepresented method to characterize the thermal transport properties of thin films. For the case of isotropic low thermal diffusivity samples, such as glasses or polymers, we demonstrate a general approach to extract the thermal conductivity with a high degree of significance. We discuss in particular the influence of thermal effusivity, thermal diffusivity, and sample layer thickness on the significance and accuracy of this measurement technique. These fundamental thermal properties guide sample and substrate selection to allow for a feasible thermal transport characterization. Furthermore, our data evaluation allows us to directly extract the thermal conductivity from this transient technique, without separate determination of the volumetric heat capacity, when appropriate boundary conditions are fulfilled. Using silica, poly(methyl methacrylate) (PMMA) thin films, and various substrates (quartz, steel, and silicon), we verify the quantitative correctness of our analytical approach.
topic Thermal conductivity
Thermal wave
Thermal transport metrology
Photoacoustic characterization
Effusivity mismatch
Thermal diffusivity
url http://www.sciencedirect.com/science/article/pii/S2213597921000082
work_keys_str_mv AT kherrmann photoacousticthermalcharacterizationoflowthermaldiffusivitythinfilms
AT nwpechmay photoacousticthermalcharacterizationoflowthermaldiffusivitythinfilms
AT mretsch photoacousticthermalcharacterizationoflowthermaldiffusivitythinfilms
_version_ 1721426630157533184