Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]...

Full description

Bibliographic Details
Main Authors: W. A. Stygar, T. J. Awe, J. E. Bailey, N. L. Bennett, E. W. Breden, E. M. Campbell, R. E. Clark, R. A. Cooper, M. E. Cuneo, J. B. Ennis, D. L. Fehl, T. C. Genoni, M. R. Gomez, G. W. Greiser, F. R. Gruner, M. C. Herrmann, B. T. Hutsel, C. A. Jennings, D. O. Jobe, B. M. Jones, M. C. Jones, P. A. Jones, P. F. Knapp, J. S. Lash, K. R. LeChien, J. J. Leckbee, R. J. Leeper, S. A. Lewis, F. W. Long, D. J. Lucero, E. A. Madrid, M. R. Martin, M. K. Matzen, M. G. Mazarakis, R. D. McBride, G. R. McKee, C. L. Miller, J. K. Moore, C. B. Mostrom, T. D. Mulville, K. J. Peterson, J. L. Porter, D. B. Reisman, G. A. Rochau, G. E. Rochau, D. V. Rose, D. C. Rovang, M. E. Savage, M. E. Sceiford, P. F. Schmit, R. F. Schneider, J. Schwarz, A. B. Sefkow, D. B. Sinars, S. A. Slutz, R. B. Spielman, B. S. Stoltzfus, C. Thoma, R. A. Vesey, P. E. Wakeland, D. R. Welch, M. L. Wisher, J. R. Woodworth
Format: Article
Language:English
Published: American Physical Society 2015-11-01
Series:Physical Review Special Topics. Accelerators and Beams
Online Access:http://doi.org/10.1103/PhysRevSTAB.18.110401
id doaj-7a73205ef98b4b91b353618da8ea4981
record_format Article
spelling doaj-7a73205ef98b4b91b353618da8ea49812020-11-25T00:11:01ZengAmerican Physical SocietyPhysical Review Special Topics. Accelerators and Beams1098-44022015-11-01181111040110.1103/PhysRevSTAB.18.110401Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experimentsW. A. StygarT. J. AweJ. E. BaileyN. L. BennettE. W. BredenE. M. CampbellR. E. ClarkR. A. CooperM. E. CuneoJ. B. EnnisD. L. FehlT. C. GenoniM. R. GomezG. W. GreiserF. R. GrunerM. C. HerrmannB. T. HutselC. A. JenningsD. O. JobeB. M. JonesM. C. JonesP. A. JonesP. F. KnappJ. S. LashK. R. LeChienJ. J. LeckbeeR. J. LeeperS. A. LewisF. W. LongD. J. LuceroE. A. MadridM. R. MartinM. K. MatzenM. G. MazarakisR. D. McBrideG. R. McKeeC. L. MillerJ. K. MooreC. B. MostromT. D. MulvilleK. J. PetersonJ. L. PorterD. B. ReismanG. A. RochauG. E. RochauD. V. RoseD. C. RovangM. E. SavageM. E. SceifordP. F. SchmitR. F. SchneiderJ. SchwarzA. B. SefkowD. B. SinarsS. A. SlutzR. B. SpielmanB. S. StoltzfusC. ThomaR. A. VeseyP. E. WakelandD. R. WelchM. L. WisherJ. R. WoodworthWe have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.http://doi.org/10.1103/PhysRevSTAB.18.110401
collection DOAJ
language English
format Article
sources DOAJ
author W. A. Stygar
T. J. Awe
J. E. Bailey
N. L. Bennett
E. W. Breden
E. M. Campbell
R. E. Clark
R. A. Cooper
M. E. Cuneo
J. B. Ennis
D. L. Fehl
T. C. Genoni
M. R. Gomez
G. W. Greiser
F. R. Gruner
M. C. Herrmann
B. T. Hutsel
C. A. Jennings
D. O. Jobe
B. M. Jones
M. C. Jones
P. A. Jones
P. F. Knapp
J. S. Lash
K. R. LeChien
J. J. Leckbee
R. J. Leeper
S. A. Lewis
F. W. Long
D. J. Lucero
E. A. Madrid
M. R. Martin
M. K. Matzen
M. G. Mazarakis
R. D. McBride
G. R. McKee
C. L. Miller
J. K. Moore
C. B. Mostrom
T. D. Mulville
K. J. Peterson
J. L. Porter
D. B. Reisman
G. A. Rochau
G. E. Rochau
D. V. Rose
D. C. Rovang
M. E. Savage
M. E. Sceiford
P. F. Schmit
R. F. Schneider
J. Schwarz
A. B. Sefkow
D. B. Sinars
S. A. Slutz
R. B. Spielman
B. S. Stoltzfus
C. Thoma
R. A. Vesey
P. E. Wakeland
D. R. Welch
M. L. Wisher
J. R. Woodworth
spellingShingle W. A. Stygar
T. J. Awe
J. E. Bailey
N. L. Bennett
E. W. Breden
E. M. Campbell
R. E. Clark
R. A. Cooper
M. E. Cuneo
J. B. Ennis
D. L. Fehl
T. C. Genoni
M. R. Gomez
G. W. Greiser
F. R. Gruner
M. C. Herrmann
B. T. Hutsel
C. A. Jennings
D. O. Jobe
B. M. Jones
M. C. Jones
P. A. Jones
P. F. Knapp
J. S. Lash
K. R. LeChien
J. J. Leckbee
R. J. Leeper
S. A. Lewis
F. W. Long
D. J. Lucero
E. A. Madrid
M. R. Martin
M. K. Matzen
M. G. Mazarakis
R. D. McBride
G. R. McKee
C. L. Miller
J. K. Moore
C. B. Mostrom
T. D. Mulville
K. J. Peterson
J. L. Porter
D. B. Reisman
G. A. Rochau
G. E. Rochau
D. V. Rose
D. C. Rovang
M. E. Savage
M. E. Sceiford
P. F. Schmit
R. F. Schneider
J. Schwarz
A. B. Sefkow
D. B. Sinars
S. A. Slutz
R. B. Spielman
B. S. Stoltzfus
C. Thoma
R. A. Vesey
P. E. Wakeland
D. R. Welch
M. L. Wisher
J. R. Woodworth
Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments
Physical Review Special Topics. Accelerators and Beams
author_facet W. A. Stygar
T. J. Awe
J. E. Bailey
N. L. Bennett
E. W. Breden
E. M. Campbell
R. E. Clark
R. A. Cooper
M. E. Cuneo
J. B. Ennis
D. L. Fehl
T. C. Genoni
M. R. Gomez
G. W. Greiser
F. R. Gruner
M. C. Herrmann
B. T. Hutsel
C. A. Jennings
D. O. Jobe
B. M. Jones
M. C. Jones
P. A. Jones
P. F. Knapp
J. S. Lash
K. R. LeChien
J. J. Leckbee
R. J. Leeper
S. A. Lewis
F. W. Long
D. J. Lucero
E. A. Madrid
M. R. Martin
M. K. Matzen
M. G. Mazarakis
R. D. McBride
G. R. McKee
C. L. Miller
J. K. Moore
C. B. Mostrom
T. D. Mulville
K. J. Peterson
J. L. Porter
D. B. Reisman
G. A. Rochau
G. E. Rochau
D. V. Rose
D. C. Rovang
M. E. Savage
M. E. Sceiford
P. F. Schmit
R. F. Schneider
J. Schwarz
A. B. Sefkow
D. B. Sinars
S. A. Slutz
R. B. Spielman
B. S. Stoltzfus
C. Thoma
R. A. Vesey
P. E. Wakeland
D. R. Welch
M. L. Wisher
J. R. Woodworth
author_sort W. A. Stygar
title Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments
title_short Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments
title_full Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments
title_fullStr Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments
title_full_unstemmed Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments
title_sort conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments
publisher American Physical Society
series Physical Review Special Topics. Accelerators and Beams
issn 1098-4402
publishDate 2015-11-01
description We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator’s water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator’s physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator’s capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.
url http://doi.org/10.1103/PhysRevSTAB.18.110401
work_keys_str_mv AT wastygar conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT tjawe conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT jebailey conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT nlbennett conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT ewbreden conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT emcampbell conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT reclark conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT racooper conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT mecuneo conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT jbennis conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT dlfehl conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT tcgenoni conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT mrgomez conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT gwgreiser conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT frgruner conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT mcherrmann conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT bthutsel conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT cajennings conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT dojobe conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT bmjones conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT mcjones conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT pajones conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT pfknapp conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT jslash conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT krlechien conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT jjleckbee conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT rjleeper conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT salewis conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT fwlong conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT djlucero conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT eamadrid conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT mrmartin conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT mkmatzen conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT mgmazarakis conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT rdmcbride conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT grmckee conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT clmiller conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT jkmoore conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT cbmostrom conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT tdmulville conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT kjpeterson conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT jlporter conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT dbreisman conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT garochau conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT gerochau conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT dvrose conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT dcrovang conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT mesavage conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT mesceiford conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT pfschmit conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT rfschneider conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT jschwarz conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT absefkow conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT dbsinars conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT saslutz conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT rbspielman conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT bsstoltzfus conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT cthoma conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT ravesey conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT pewakeland conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT drwelch conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT mlwisher conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
AT jrwoodworth conceptualdesignsoftwopetawattclasspulsedpoweracceleratorsforhighenergydensityphysicsexperiments
_version_ 1725405584215244800