Multiple solutions for Schrodinger-Poisson systems with sign-changing potential and critical nonlinearity

In this article, we study the Schr\"odinger-Poisson system $$\displaylines{ -\Delta u+V(x)u+k(x)\phi(x)u=h_1(x)|u|^{4}u+\mu h_{2}(x)u+h_3(x), \quad\text{in } \mathbb{R}^3, \cr -\Delta \phi(x)=k(x)u^2 , \quad\text{in } \mathbb{R}^3, }$$ where $h_1(x),h_{2}(x),h_3(x), V(x)$ are allowed to b...

Full description

Bibliographic Details
Main Authors: Liuyang Shao, Haibo Chen
Format: Article
Language:English
Published: Texas State University 2016-10-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2016/276/abstr.html
Description
Summary:In this article, we study the Schr\"odinger-Poisson system $$\displaylines{ -\Delta u+V(x)u+k(x)\phi(x)u=h_1(x)|u|^{4}u+\mu h_{2}(x)u+h_3(x), \quad\text{in } \mathbb{R}^3, \cr -\Delta \phi(x)=k(x)u^2 , \quad\text{in } \mathbb{R}^3, }$$ where $h_1(x),h_{2}(x),h_3(x), V(x)$ are allowed to be sign-changing and $\mu>0$ is a parameter. Under some appropriate assumptions on V(x), we obtain the existence of two different solutions for the above system via variational methods.
ISSN:1072-6691