Higher integrity of the motor and visual pathways in long-term video game players

Long term video game players (VGPs) exhibit superior visual and motor skills compared with non-video game control subjects (NVGCs). However, the neural basis underlying the enhanced behavioral performance remains largely unknown. To clarify this issue, the present study compared the whiter matter in...

Full description

Bibliographic Details
Main Authors: Yang Zhang, Guijin Du, Yongxin Yang, Wen Qin, Xiaodong Li, Quan Zhang
Format: Article
Language:English
Published: Frontiers Media S.A. 2015-03-01
Series:Frontiers in Human Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fnhum.2015.00098/full
Description
Summary:Long term video game players (VGPs) exhibit superior visual and motor skills compared with non-video game control subjects (NVGCs). However, the neural basis underlying the enhanced behavioral performance remains largely unknown. To clarify this issue, the present study compared the whiter matter integrity within the corticospinal tracts (CST), the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF) between the VGPs and the NVGCs using diffusion tensor imaging. Compared with the NVGCs, voxel-wise comparisons revealed significantly higher fractional anisotropy (FA) values in some regions within the left CST, left SLF, bilateral ILF, and IFOF in VGPs. Furthermore, higher FA values in the left CST at the level of cerebral peduncle predicted a faster response in visual attention tasks. These results suggest that higher white matter integrity in the motor and higher-tier visual pathways is associated with long-term video game playing, which may contribute to the understanding on how video game play influences motor and visual performance.
ISSN:1662-5161