Different Evolutionary Modifications as a Guide to Rewire Two-Component Systems

Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewir...

Full description

Bibliographic Details
Main Authors: Beate Krueger, Torben Friedrich, Frank Förster, Jörg Bernhardt, Roy Gross, Thomas Dandekar
Format: Article
Language:English
Published: SAGE Publishing 2012-01-01
Series:Bioinformatics and Biology Insights
Online Access:https://doi.org/10.4137/BBI.S9356
Description
Summary:Two-component systems (TCS) are short signalling pathways generally occurring in prokaryotes. They frequently regulate prokaryotic stimulus responses and thus are also of interest for engineering in biotechnology and synthetic biology. The aim of this study is to better understand and describe rewiring of TCS while investigating different evolutionary scenarios. Based on large-scale screens of TCS in different organisms, this study gives detailed data, concrete alignments, and structure analysis on three general modification scenarios, where TCS were rewired for new responses and functions: (i) exchanges in the sequence within single TCS domains, (ii) exchange of whole TCS domains; (iii) addition of new components modulating TCS function. As a result, the replacement of stimulus and promotor cassettes to rewire TCS is well defined exploiting the alignments given here. The diverged TCS examples are non-trivial and the design is challenging. Designed connector proteins may also be useful to modify TCS in selected cases.
ISSN:1177-9322