Nanocrystalline TiO2/SnO2 heterostructures for gas sensing

The aim of this research is to study the role of nanocrystalline TiO2/SnO2 n–n heterojunctions for hydrogen sensing. Nanopowders of pure SnO2, 90 mol % SnO2/10 mol % TiO2, 10 mol % SnO2/90 mol % TiO2 and pure TiO2 have been obtained using flame spray synthesis (FSS). The samples have been characteri...

Full description

Bibliographic Details
Main Authors: Barbara Lyson-Sypien, Anna Kusior, Mieczylaw Rekas, Jan Zukrowski, Marta Gajewska, Katarzyna Michalow-Mauke, Thomas Graule, Marta Radecka, Katarzyna Zakrzewska
Format: Article
Language:English
Published: Beilstein-Institut 2017-01-01
Series:Beilstein Journal of Nanotechnology
Subjects:
Online Access:https://doi.org/10.3762/bjnano.8.12
id doaj-7ba05fcdd1be4887a4c749346383d4dc
record_format Article
spelling doaj-7ba05fcdd1be4887a4c749346383d4dc2020-11-25T00:44:15ZengBeilstein-InstitutBeilstein Journal of Nanotechnology2190-42862017-01-018110812210.3762/bjnano.8.122190-4286-8-12Nanocrystalline TiO2/SnO2 heterostructures for gas sensingBarbara Lyson-Sypien0Anna Kusior1Mieczylaw Rekas2Jan Zukrowski3Marta Gajewska4Katarzyna Michalow-Mauke5Thomas Graule6Marta Radecka7Katarzyna Zakrzewska8AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Al. A. Mickiewicza 30, 30-059 Krakow, PolandAGH University of Science and Technology, Faculty of Materials Science and Ceramics, Al. A. Mickiewicza 30, 30-059 Krakow, PolandAGH University of Science and Technology, Faculty of Materials Science and Ceramics, Al. A. Mickiewicza 30, 30-059 Krakow, PolandAGH University of Science and Technology, Academic Center for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059 Krakow, PolandAGH University of Science and Technology, Academic Center for Materials and Nanotechnology, Al. A. Mickiewicza 30, 30-059 Krakow, PolandEMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for High Performance Ceramics, Uberlandstrasse 129, 8600 Duebendorf, SwitzerlandEMPA, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for High Performance Ceramics, Uberlandstrasse 129, 8600 Duebendorf, SwitzerlandAGH University of Science and Technology, Faculty of Materials Science and Ceramics, Al. A. Mickiewicza 30, 30-059 Krakow, PolandAGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Al. A. Mickiewicza 30, 30-059 Krakow, PolandThe aim of this research is to study the role of nanocrystalline TiO2/SnO2 n–n heterojunctions for hydrogen sensing. Nanopowders of pure SnO2, 90 mol % SnO2/10 mol % TiO2, 10 mol % SnO2/90 mol % TiO2 and pure TiO2 have been obtained using flame spray synthesis (FSS). The samples have been characterized by BET, XRD, SEM, HR-TEM, Mössbauer effect and impedance spectroscopy. Gas-sensing experiments have been performed for H2 concentrations of 1–3000 ppm at 200–400 °C. The nanomaterials are well-crystallized, anatase TiO2, rutile TiO2 and cassiterite SnO2 polymorphic forms are present depending on the chemical composition of the powders. The crystallite sizes from XRD peak analysis are within the range of 3–27 nm. Tin exhibits only the oxidation state 4+. The H2 detection threshold for the studied TiO2/SnO2 heterostructures is lower than 1 ppm especially in the case of SnO2-rich samples. The recovery time of SnO2-based heterostructures, despite their large responses over the whole measuring range, is much longer than that of TiO2-rich samples at higher H2 flows. TiO2/SnO2 heterostructures can be intentionally modified for the improved H2 detection within both the small (1–50 ppm) and the large (50–3000 ppm) concentration range. The temperature Tmax at which the semiconducting behavior begins to prevail upon water desorption/oxygen adsorption depends on the TiO2/SnO2 composition. The electrical resistance of sensing materials exhibits a power-law dependence on the H2 partial pressure. This allows us to draw a conclusion about the first step in the gas sensing mechanism related to the adsorption of oxygen ions at the surface of nanomaterials.https://doi.org/10.3762/bjnano.8.12gas sensorshydrogenn–n heterojunctionsnanomaterialsTiO2/SnO2
collection DOAJ
language English
format Article
sources DOAJ
author Barbara Lyson-Sypien
Anna Kusior
Mieczylaw Rekas
Jan Zukrowski
Marta Gajewska
Katarzyna Michalow-Mauke
Thomas Graule
Marta Radecka
Katarzyna Zakrzewska
spellingShingle Barbara Lyson-Sypien
Anna Kusior
Mieczylaw Rekas
Jan Zukrowski
Marta Gajewska
Katarzyna Michalow-Mauke
Thomas Graule
Marta Radecka
Katarzyna Zakrzewska
Nanocrystalline TiO2/SnO2 heterostructures for gas sensing
Beilstein Journal of Nanotechnology
gas sensors
hydrogen
n–n heterojunctions
nanomaterials
TiO2/SnO2
author_facet Barbara Lyson-Sypien
Anna Kusior
Mieczylaw Rekas
Jan Zukrowski
Marta Gajewska
Katarzyna Michalow-Mauke
Thomas Graule
Marta Radecka
Katarzyna Zakrzewska
author_sort Barbara Lyson-Sypien
title Nanocrystalline TiO2/SnO2 heterostructures for gas sensing
title_short Nanocrystalline TiO2/SnO2 heterostructures for gas sensing
title_full Nanocrystalline TiO2/SnO2 heterostructures for gas sensing
title_fullStr Nanocrystalline TiO2/SnO2 heterostructures for gas sensing
title_full_unstemmed Nanocrystalline TiO2/SnO2 heterostructures for gas sensing
title_sort nanocrystalline tio2/sno2 heterostructures for gas sensing
publisher Beilstein-Institut
series Beilstein Journal of Nanotechnology
issn 2190-4286
publishDate 2017-01-01
description The aim of this research is to study the role of nanocrystalline TiO2/SnO2 n–n heterojunctions for hydrogen sensing. Nanopowders of pure SnO2, 90 mol % SnO2/10 mol % TiO2, 10 mol % SnO2/90 mol % TiO2 and pure TiO2 have been obtained using flame spray synthesis (FSS). The samples have been characterized by BET, XRD, SEM, HR-TEM, Mössbauer effect and impedance spectroscopy. Gas-sensing experiments have been performed for H2 concentrations of 1–3000 ppm at 200–400 °C. The nanomaterials are well-crystallized, anatase TiO2, rutile TiO2 and cassiterite SnO2 polymorphic forms are present depending on the chemical composition of the powders. The crystallite sizes from XRD peak analysis are within the range of 3–27 nm. Tin exhibits only the oxidation state 4+. The H2 detection threshold for the studied TiO2/SnO2 heterostructures is lower than 1 ppm especially in the case of SnO2-rich samples. The recovery time of SnO2-based heterostructures, despite their large responses over the whole measuring range, is much longer than that of TiO2-rich samples at higher H2 flows. TiO2/SnO2 heterostructures can be intentionally modified for the improved H2 detection within both the small (1–50 ppm) and the large (50–3000 ppm) concentration range. The temperature Tmax at which the semiconducting behavior begins to prevail upon water desorption/oxygen adsorption depends on the TiO2/SnO2 composition. The electrical resistance of sensing materials exhibits a power-law dependence on the H2 partial pressure. This allows us to draw a conclusion about the first step in the gas sensing mechanism related to the adsorption of oxygen ions at the surface of nanomaterials.
topic gas sensors
hydrogen
n–n heterojunctions
nanomaterials
TiO2/SnO2
url https://doi.org/10.3762/bjnano.8.12
work_keys_str_mv AT barbaralysonsypien nanocrystallinetio2sno2heterostructuresforgassensing
AT annakusior nanocrystallinetio2sno2heterostructuresforgassensing
AT mieczylawrekas nanocrystallinetio2sno2heterostructuresforgassensing
AT janzukrowski nanocrystallinetio2sno2heterostructuresforgassensing
AT martagajewska nanocrystallinetio2sno2heterostructuresforgassensing
AT katarzynamichalowmauke nanocrystallinetio2sno2heterostructuresforgassensing
AT thomasgraule nanocrystallinetio2sno2heterostructuresforgassensing
AT martaradecka nanocrystallinetio2sno2heterostructuresforgassensing
AT katarzynazakrzewska nanocrystallinetio2sno2heterostructuresforgassensing
_version_ 1725275491279044608