Seasonal Variations and Sources of Airborne Polycyclic Aromatic Hydrocarbons (PAHs) in Chengdu, China

The concentrations of polycyclic aromatic hydrocarbons (PAHs) in the air of Chengdu, a southwest city of China, were determined from March 2015 to February 2016. Here, two diagnostic ratios (DR) were determined and a principal component analysis/multiple linear regression (PCA/MLR) analysis was perf...

Full description

Bibliographic Details
Main Authors: Ju Yang, Wenlai Xu, Huiyu Cheng
Format: Article
Language:English
Published: MDPI AG 2018-02-01
Series:Atmosphere
Subjects:
Online Access:http://www.mdpi.com/2073-4433/9/2/63
Description
Summary:The concentrations of polycyclic aromatic hydrocarbons (PAHs) in the air of Chengdu, a southwest city of China, were determined from March 2015 to February 2016. Here, two diagnostic ratios (DR) were determined and a principal component analysis/multiple linear regression (PCA/MLR) analysis was performed to identify the sources of PAHs during the four seasons. The gaseous and particle phase samples were analyzed separately. The sampled air had a gas-to particle ratio of 4.21, and between 18.7% and 31.3% of the total detected PAHs were found in the particulate phase. The total concentration of all 16-PAHs combined (gas + particles) varied from 176.94 in summer to 458.95 ng·m−3 in winter, with a mean of 300.35 ± 176.6 ng·m−3. In the gas phase, phenanthrene(Phe) was found at the highest concentrations in all four seasons, while benzo[b]fluoranthene(BbF) and (in winter) chrysene(Chr) were the highest in the particle phase. The DR of Fluroanthene (Flua)/(Flua + Pyrene (Pyr)) was higher in the gas phase than in the particle phase, while the Indeno[1,2,3-cd]pyrene(IcdP)/(IcdP + Benzo[ghi]perylene (BghiP)) ratio was more variable in the gas than that in the particle phase. The main sources for both phases were a mixture of liquid fossil fuel combustion and the burning of biomass and coal, with clear seasonal variation. Principal Component Analysis/Multiple Linear Regression (PCA/MLR) analysis identified the main PAH sources as coal burning (52%) with motor vehicle exhaust and coke (48%) in spring; coal (52%), coke (21%), and motor vehicle exhaust (27%) in summer; coal (47%), vehicle exhaust (34%), and coke (19%) in autumn; and coal (58%) and vehicle exhaust (42%) in winter.
ISSN:2073-4433