Improved detection of air trapping on expiratory computed tomography using deep learning.
<h4>Background</h4>Radiologic evidence of air trapping (AT) on expiratory computed tomography (CT) scans is associated with early pulmonary dysfunction in patients with cystic fibrosis (CF). However, standard techniques for quantitative assessment of AT are highly variable, resulting in...
Main Authors: | Sundaresh Ram, Benjamin A Hoff, Alexander J Bell, Stefanie Galban, Aleksa B Fortuna, Oliver Weinheimer, Mark O Wielpütz, Terry E Robinson, Beverley Newman, Dharshan Vummidi, Aamer Chughtai, Ella A Kazerooni, Timothy D Johnson, MeiLan K Han, Charles R Hatt, Craig J Galban |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2021-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0248902 |
Similar Items
-
Validation of automated lobe segmentation on paired inspiratory-expiratory chest CT in 8-14 year-old children with cystic fibrosis.
by: Philip Konietzke, et al.
Published: (2018-01-01) -
Los sistemas de hipertexto e hipermedios. Una nueva aplicación en informática documental. Mercedes Caridad y Purificación Moscoso. ISBN: 84-86168-63-5. Ed. Fundación Germán Sánchez Ruipérez Madrid, 1992
by: Carmen Galbán
Published: (1993-03-01) -
Cuba: escenario demográfico de un país en vías de desarrollo con decrecimiento poblacional
by: Humberto González Galbán, et al.
Published: (2007-07-01) -
Diurnal Variation in Peak Expiratory Flow and Forced Expiratory Volume
by: Arun Goel, et al.
Published: (2015-10-01) -
Sparse Representations and Nonlinear Image Processing for Inverse Imaging Solutions
by: Ram, Sundaresh, et al.
Published: (2017)