Diazepam Promotes Translocation of Human Constitutive Androstane Receptor (CAR) via Direct Interaction with the Ligand-Binding Domain

The constitutive androstane receptor (CAR) is the essential regulator of genes involved both in xenobiotic and endobiotic metabolism. Diazepam has been shown as a potent stimulator of CAR nuclear translocation and is assumed as an indirect CAR activator not interacting with the CAR cavity. In this s...

Full description

Bibliographic Details
Main Authors: Josef Skoda, Jan Dusek, Martin Drastik, Alzbeta Stefela, Klara Dohnalova, Karel Chalupsky, Tomas Smutny, Stanislav Micuda, Sabine Gerbal-Chaloin, Petr Pavek
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Cells
Subjects:
CAR
Online Access:https://www.mdpi.com/2073-4409/9/12/2532
Description
Summary:The constitutive androstane receptor (CAR) is the essential regulator of genes involved both in xenobiotic and endobiotic metabolism. Diazepam has been shown as a potent stimulator of CAR nuclear translocation and is assumed as an indirect CAR activator not interacting with the CAR cavity. In this study, we sought to determine if diazepam is a ligand directly interacting with the CAR ligand binding domain (LBD) and if it regulates its target genes in a therapeutically relevant concentration. We used different CAR constructs in translocation and luciferase reporter assays, recombinant CAR-LBD in a TR-FRET assay, and target genes induction studied in primary human hepatocytes (PHHs), HepaRG cells, and in CAR humanized mice. We also used in silico docking and CAR-LBD mutants to characterize the interaction of diazepam and its metabolites with the CAR cavity. Diazepam and its metabolites such as nordazepam, temazepam, and oxazepam are activators of CAR+Ala in translocation and two-hybrid assays and fit the CAR cavity in docking experiments. In gene reporter assays with CAR3 and in the TR-FRET assay, only diazepam significantly interacts with CAR-LBD. Diazepam also promotes up-regulation of CYP2B6 in PHHs and in HepaRG cells. However, in humanized CAR mice, diazepam significantly induces neither <i>CYP2B6</i> nor <i>Cyp2b10</i> genes nor does it regulate critical genes involved in glucose and lipids metabolism and liver proliferation. Thus, we demonstrate that diazepam interacts with human CAR-LBD as a weak ligand, but it does not significantly affect expression of tested CAR target genes in CAR humanized mice.
ISSN:2073-4409