Time Switching Based Wireless Powered Relay Transmission with Uplink NOMA

Non-orthogonal multiple access (NOMA) utilizes power domain multiplexing to improve spectrum efficiency compared with orthogonal multiple access (OMA). In the Internet of Things (IoT) uplink NOMA networks, if the channel between the far-end node and the base station is in deep fading, allocating lar...

Full description

Bibliographic Details
Main Authors: Zhihua Lin, Shihua Cao, Jianqing Li
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/16/5467
Description
Summary:Non-orthogonal multiple access (NOMA) utilizes power domain multiplexing to improve spectrum efficiency compared with orthogonal multiple access (OMA). In the Internet of Things (IoT) uplink NOMA networks, if the channel between the far-end node and the base station is in deep fading, allocating larger transmitting power for this node cannot achieve higher spectrum efficiency and overall system throughput. Relay cooperative communication reduces the transmitting power at the far-end node but leads to extra energy expenditure at the relay node. Fortunately, simultaneous wireless information and power transfer (SWIPT) is advocated in energy-constrained IoT networks to save energy consumption. However, early works all focus on energy harvesting (EH) from one source node or one dedicated power supply station. In this paper, we propose a time switching based wireless powered relay transmission model with uplink NOMA where our EH technique can harvest energy from two simultaneously transmitting nodes. More importantly, by optimizing relay position more energy is harvested from the near-end node at the relay and relay signal attenuation to the destination is reduced as well. Furthermore, the closed-form expressions of outage probability and overall system throughput are derived, and numerical results prove that NOMA in our EH scheme achieves better performance compared to the traditional EH scheme and OMA by optimizing the position of the relay node, time switching factor and so on.
ISSN:1424-8220