Respiration of Microbiota-Derived 1,2-propanediol Drives Salmonella Expansion during Colitis.

Intestinal inflammation caused by Salmonella enterica serovar Typhimurium increases the availability of electron acceptors that fuel a respiratory growth of the pathogen in the intestinal lumen. Here we show that one of the carbon sources driving this respiratory expansion in the mouse model is 1,2-...

Full description

Bibliographic Details
Main Authors: Franziska Faber, Parameth Thiennimitr, Luisella Spiga, Mariana X Byndloss, Yael Litvak, Sara Lawhon, Helene L Andrews-Polymenis, Sebastian E Winter, Andreas J Bäumler
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS Pathogens
Online Access:http://europepmc.org/articles/PMC5215881?pdf=render
Description
Summary:Intestinal inflammation caused by Salmonella enterica serovar Typhimurium increases the availability of electron acceptors that fuel a respiratory growth of the pathogen in the intestinal lumen. Here we show that one of the carbon sources driving this respiratory expansion in the mouse model is 1,2-propanediol, a microbial fermentation product. 1,2-propanediol utilization required intestinal inflammation induced by virulence factors of the pathogen. S. Typhimurium used both aerobic and anaerobic respiration to consume 1,2-propanediol and expand in the murine large intestine. 1,2-propanediol-utilization did not confer a benefit in germ-free mice, but the pdu genes conferred a fitness advantage upon S. Typhimurium in mice mono-associated with Bacteroides fragilis or Bacteroides thetaiotaomicron. Collectively, our data suggest that intestinal inflammation enables S. Typhimurium to sidestep nutritional competition by respiring a microbiota-derived fermentation product.
ISSN:1553-7366
1553-7374