Development of platinum strain gauge based on Ni-Co metal substrate for smart catheter application

Abstract Rapid diagnosis and treatment are required when blood clots build up in a blood vessel and clog up the vessel. This study proposes novel smart catheters that can simultaneously diagnose and treat blood vessel disease. This quick treatment increases survival probability and can prevent vario...

Full description

Bibliographic Details
Main Authors: Yunho Kim, Jajin Kim, Yongdae Kim
Format: Article
Language:English
Published: SpringerOpen 2020-08-01
Series:Micro and Nano Systems Letters
Subjects:
Online Access:http://link.springer.com/article/10.1186/s40486-020-00117-w
Description
Summary:Abstract Rapid diagnosis and treatment are required when blood clots build up in a blood vessel and clog up the vessel. This study proposes novel smart catheters that can simultaneously diagnose and treat blood vessel disease. This quick treatment increases survival probability and can prevent various complications. In the design of the smart catheters, Pt strain gauges can be used to measure the inside diameter of the vessel. This paper proposes a new fabrication process of the Pt strain gauges based on metal substrates made of Ni and Co alloy (referred to as “Ni-Co” in this paper). In the fabrication process, a Ni-Co thin film was deposited onto a silicon carrier wafer by electroplating and patterned into individual shapes by a liftoff process. Then, a multilayered Pt strain gauge consisting of insulation, adhesive layers, and Pt metallization was formed on the Ni-Co flexible substrate. Subsequently, the Pt strain gauges were peeled off from the carrier wafer by a new release process. To evaluate the performance of the strain gauges in terms of gauge factor and nonlinearity, tensile and compression tests were conducted by attaching Pt strain gauges to the constant stress beam.
ISSN:2213-9621