Methods to prevent PCR amplification of DNA from non-viable virus were not successful for infectious laryngotracheitis virus.

Molecular-based testing of poultry dust has been used as a fast, sensitive and specific way to monitor viruses in chicken flocks but it provides no information on viral viability. Differentiation of viable and nonviable virus would expand the usefulness of PCR-based detection. This study tested thre...

Full description

Bibliographic Details
Main Authors: Yugal Raj Bindari, Stephen W Walkden-Brown, Priscilla F Gerber
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2020-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0232571
Description
Summary:Molecular-based testing of poultry dust has been used as a fast, sensitive and specific way to monitor viruses in chicken flocks but it provides no information on viral viability. Differentiation of viable and nonviable virus would expand the usefulness of PCR-based detection. This study tested three treatments (1. DNAse, 2. propidium monoazide [PMA], 3. immunomagnetic separation [IMS]) applied to dust or virus stock prior to nucleic acid extraction for their ability to exclude nonviable virus from PCR amplification. Infectious laryngotracheitis virus (ILTV) was used as a model. These treatments assume loss of viral viability due to damage to the capsid or to denaturation of epitope proteins. DNAse and PMA assess the integrity of the capsid to penetration by enzyme or intercalating dye, while IMS assesses the integrity of epitope proteins. Treatments were evaluated for their ability to reduce PCR signal, measured as ILTV log10 genomic copies (ILTV GC), of heat and chemically inactivated ILTV in poultry dust and virus stock. Compared to untreated dust samples, there was an overall reduction of 1.7 ILTV GC after IMS treatment (p<0.01), and a reduction of 2.0 ILTV GC after PMA treatment (p<0.0001). DNAse treatment did not reduce ILTV GC in dust (p = 0.68). Compared to untreated virus stocks, there was an overall reduction of 0.5 ILTV GC after DNAse treatment (p = 0.04), a reduction of 1.8 ILTV GC after IMS treatment (p<0.001) and a reduction of 1.4 ILTV GC after PMA treatment (p<0.0001). None of the treatments completely suppressed the detection of inactivated ILTV GC. In conclusion, treatments that use capsid integrity or protein epitope denaturation as markers to assess ILTV infectivity are unsuitable to accurately estimate proportions of viable virus in poultry dust and virus stocks.
ISSN:1932-6203