Self-consistent estimation of mislocated fixations during reading.

During reading, we generate saccadic eye movements to move words into the center of the visual field for word processing. However, due to systematic and random errors in the oculomotor system, distributions of within-word landing positions are rather broad and show overlapping tails, which suggests...

Full description

Bibliographic Details
Main Authors: Ralf Engbert, Antje Nuthmann
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2008-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC2211408?pdf=render
Description
Summary:During reading, we generate saccadic eye movements to move words into the center of the visual field for word processing. However, due to systematic and random errors in the oculomotor system, distributions of within-word landing positions are rather broad and show overlapping tails, which suggests that a fraction of fixations is mislocated and falls on words to the left or right of the selected target word. Here we propose a new procedure for the self-consistent estimation of the likelihood of mislocated fixations in normal reading. Our approach is based on iterative computation of the proportions of several types of oculomotor errors, the underlying probabilities for word-targeting, and corrected distributions of landing positions. We found that the average fraction of mislocated fixations ranges from about 10% to more than 30% depending on word length. These results show that fixation probabilities are strongly affected by oculomotor errors.
ISSN:1932-6203