MATEMATINĖ TIESA BE REFERENCIJOS
Pagal kanoninį argumentą, remiantį matematinį platonizmą, vieninga semantika, apimanti matematinę ir nematematinę kalbą, įmanoma tik jei matematikos singuliarinius terminus laikysime nurodančiais objektus, o kvantorius – apimančiais tokių objektų sritį, todėl jei matematikos teiginius laikome teisin...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius University Press
2015-01-01
|
Series: | Problemos |
Subjects: | |
Online Access: | http://www.journals.vu.lt/problemos/article/view/4926 |
Summary: | Pagal kanoninį argumentą, remiantį matematinį platonizmą, vieninga semantika, apimanti matematinę ir nematematinę kalbą, įmanoma tik jei matematikos singuliarinius terminus laikysime nurodančiais objektus, o kvantorius – apimančiais tokių objektų sritį, todėl jei matematikos teiginius laikome teisingais tiesiogine prasme, tai įpareigoja mus pripažinti (nuo mąstymo nepriklausomų, abstrakčių) matematinių objektų egzistavimą. Šiame straipsnyje siekiama įrodyti, kad jei mes galime sukurti vieningą semantiką reikšmingai daliai kasdienės nematematinės kalbos, tai galime sukurti vieningą semantiką apimančią matematinę ir nematematinę kalbą, neįsipareigodami matematinių objektų egzistavimui. |
---|---|
ISSN: | 1392-1126 2424-6158 |