RNA viromes of the oriental hybrid lily cultivar “Sorbonne”

Abstract Background The lily is a perennial flowering plant belonging to the genus Lilium in the family Liliaceae. Most cultivated lily plants are propagated by bulbs. Therefore, numerous lily bulbs are frequently infected by diverse viruses causing viral diseases. To date, no study has examined the...

Full description

Bibliographic Details
Main Authors: Yeonhwa Jo, Won Kyong Cho
Format: Article
Language:English
Published: BMC 2018-10-01
Series:BMC Genomics
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12864-018-5138-3
Description
Summary:Abstract Background The lily is a perennial flowering plant belonging to the genus Lilium in the family Liliaceae. Most cultivated lily plants are propagated by bulbs. Therefore, numerous lily bulbs are frequently infected by diverse viruses causing viral diseases. To date, no study has examined the viromes of plants of one type with identical genetic backgrounds collected from different geographical regions. Results Here, we examined different viromes of the lily cultivar “Sorbonne” using 172 gigabytes of transcriptome data composed of 23 libraries from four different projects for the cultivar “Sorbonne.” We identified 396 virus-associated contigs from all but one library. We identified six different viruses, including Plantago asiatica mosaic virus (PlAMV), Cucumber mosaic virus (CMV), Lily symptomless virus (LSV), Tulip virus X (TVX), Lily mottle virus (LMoV), and Tobacco rattle virus (TRV). Of them, PlAMV was the most common virus infecting the lily. Scale and flower samples possessed a high number of virus-associated reads. We assembled 32 nearly complete genomes for the six identified viruses possessing the polyadenylate tails. Genomes of all six viruses were highly conserved in the lily cultivar “Sorbonne” based on mutation analysis. We identified defective RNAs from LSV, TVX, and PlAMV localized in the triple gene block region. Phylogenetic analyses showed that virus genomes are highly correlated with geographical regions and host plants. Conclusions We conducted comprehensive virome analyses of a single lily cultivar, “Sorbonne,” using transcriptome data. Our results shed light on an array of lily virome-associated topics, including virus identification, the dominant virus, virus accumulation in different plant tissues, virus genome assembly, virus mutation, identification of defective RNAs, and phylogenetic relationships of identified viruses. Taken together, we provide very useful methods and valuable results that can be applied in other virome-associated studies.
ISSN:1471-2164