Effects of Different Water Supply and Corm Planting Density on Crocin, Picrocrocin and Safranal, Nitrogen Uptake and Water Use Efficiency of Saffron Grown in Semi-Arid Region
Saffron’s color, taste and odor result from the chemicals crocin, picrocrocin and safranal, respectively. Hence, in addition to quantitative yield, secondary metabolites content are known as crucial factors for a successful saffron production. Moreover, enhancing resources efficiency, especially wat...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca
2016-09-01
|
Series: | Notulae Scientia Biologicae |
Online Access: | http://www.notulaebiologicae.ro/index.php/nsb/article/view/9855 |
id |
doaj-7de6608c824d4db2a716419c6b8a8bae |
---|---|
record_format |
Article |
spelling |
doaj-7de6608c824d4db2a716419c6b8a8bae2020-11-25T00:40:42ZengUniversity of Agricultural Sciences and Veterinary Medicine, Cluj-NapocaNotulae Scientia Biologicae2067-32052067-32642016-09-018333434110.15835/nsb8398558241Effects of Different Water Supply and Corm Planting Density on Crocin, Picrocrocin and Safranal, Nitrogen Uptake and Water Use Efficiency of Saffron Grown in Semi-Arid RegionAlireza KOOCHEKI0Seyyed Mohammad SEYYEDI1Ferdowsi University of Mashhad, Faculty of Agriculture, Department of Agronomy, PO Box 91779, 48974 Mashhad, IranFerdowsi University of Mashhad, Faculty of Agriculture, Department of Agronomy, PO Box 91779, 48974 Mashhad, IranSaffron’s color, taste and odor result from the chemicals crocin, picrocrocin and safranal, respectively. Hence, in addition to quantitative yield, secondary metabolites content are known as crucial factors for a successful saffron production. Moreover, enhancing resources efficiency, especially water and nitrogen, is becoming increasingly important for agricultural improvement in arid and semi-arid regions. Thus, the effects of irrigation levels and corm planting on crocin, picrocrocin and safranal content, water use efficiency (WUE) as well as nitrogen use efficiency (NUE) of saffron were investigated as a two-year field experiment based on a randomized complete block design arranged in split-plot with three replicates. The irrigation levels (100, 75 and 50% of saffron water requirement) and corm planting pattern (50, 100, 200 and 300 corms m-2) were allocated to main and sub-plots, respectively. Based on the results, crocin and picrocrocin content increased with decreasing irrigation levels. The highest WUES (WUE based on dry stigma yield) was obtained when 50% of saffron water requirement was supplied. However, the lowest WUEC (WUE based on daughter corms yield) and NUEC (NUE based on daughter corms yield) were obtained when 50% of saffron water requirement was applied. Irrespective of irrigation levels, WUES, WUEC and NUEC increased with increasing the planting density. The results demonstrated that although relatively severe water stress increases WUES and secondary metabolites in saffron stigmas, it could decrease WUEC and NUEC through affecting daughter corm growth.http://www.notulaebiologicae.ro/index.php/nsb/article/view/9855 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Alireza KOOCHEKI Seyyed Mohammad SEYYEDI |
spellingShingle |
Alireza KOOCHEKI Seyyed Mohammad SEYYEDI Effects of Different Water Supply and Corm Planting Density on Crocin, Picrocrocin and Safranal, Nitrogen Uptake and Water Use Efficiency of Saffron Grown in Semi-Arid Region Notulae Scientia Biologicae |
author_facet |
Alireza KOOCHEKI Seyyed Mohammad SEYYEDI |
author_sort |
Alireza KOOCHEKI |
title |
Effects of Different Water Supply and Corm Planting Density on Crocin, Picrocrocin and Safranal, Nitrogen Uptake and Water Use Efficiency of Saffron Grown in Semi-Arid Region |
title_short |
Effects of Different Water Supply and Corm Planting Density on Crocin, Picrocrocin and Safranal, Nitrogen Uptake and Water Use Efficiency of Saffron Grown in Semi-Arid Region |
title_full |
Effects of Different Water Supply and Corm Planting Density on Crocin, Picrocrocin and Safranal, Nitrogen Uptake and Water Use Efficiency of Saffron Grown in Semi-Arid Region |
title_fullStr |
Effects of Different Water Supply and Corm Planting Density on Crocin, Picrocrocin and Safranal, Nitrogen Uptake and Water Use Efficiency of Saffron Grown in Semi-Arid Region |
title_full_unstemmed |
Effects of Different Water Supply and Corm Planting Density on Crocin, Picrocrocin and Safranal, Nitrogen Uptake and Water Use Efficiency of Saffron Grown in Semi-Arid Region |
title_sort |
effects of different water supply and corm planting density on crocin, picrocrocin and safranal, nitrogen uptake and water use efficiency of saffron grown in semi-arid region |
publisher |
University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca |
series |
Notulae Scientia Biologicae |
issn |
2067-3205 2067-3264 |
publishDate |
2016-09-01 |
description |
Saffron’s color, taste and odor result from the chemicals crocin, picrocrocin and safranal, respectively. Hence, in addition to quantitative yield, secondary metabolites content are known as crucial factors for a successful saffron production. Moreover, enhancing resources efficiency, especially water and nitrogen, is becoming increasingly important for agricultural improvement in arid and semi-arid regions. Thus, the effects of irrigation levels and corm planting on crocin, picrocrocin and safranal content, water use efficiency (WUE) as well as nitrogen use efficiency (NUE) of saffron were investigated as a two-year field experiment based on a randomized complete block design arranged in split-plot with three replicates. The irrigation levels (100, 75 and 50% of saffron water requirement) and corm planting pattern (50, 100, 200 and 300 corms m-2) were allocated to main and sub-plots, respectively. Based on the results, crocin and picrocrocin content increased with decreasing irrigation levels. The highest WUES (WUE based on dry stigma yield) was obtained when 50% of saffron water requirement was supplied. However, the lowest WUEC (WUE based on daughter corms yield) and NUEC (NUE based on daughter corms yield) were obtained when 50% of saffron water requirement was applied. Irrespective of irrigation levels, WUES, WUEC and NUEC increased with increasing the planting density. The results demonstrated that although relatively severe water stress increases WUES and secondary metabolites in saffron stigmas, it could decrease WUEC and NUEC through affecting daughter corm growth. |
url |
http://www.notulaebiologicae.ro/index.php/nsb/article/view/9855 |
work_keys_str_mv |
AT alirezakoocheki effectsofdifferentwatersupplyandcormplantingdensityoncrocinpicrocrocinandsafranalnitrogenuptakeandwateruseefficiencyofsaffrongrowninsemiaridregion AT seyyedmohammadseyyedi effectsofdifferentwatersupplyandcormplantingdensityoncrocinpicrocrocinandsafranalnitrogenuptakeandwateruseefficiencyofsaffrongrowninsemiaridregion |
_version_ |
1725288469556625408 |