Effects of microbial conditioning and temperature on the leaf-litter shredding activity of Phylloicus sp.

Few studies try to explain the effects in tropical lotic ecosystems of an increase in water temperature on the shredding activity of invertebrate shredders, particularly in association with the quality of the leaf litter and the degree of litter conditioning. Therefore, the aims of this study were a...

Full description

Bibliographic Details
Main Authors: Fernanda Keley Silva Pereira Navarro, José Francisco Gonçalves Junior
Format: Article
Language:English
Published: Universidade Estadual de Maringá 2020-07-01
Series:Acta Scientiarum : Biological Sciences
Subjects:
Online Access:http://www.periodicos.uem.br/ojs/index.php/ActaSciBiolSci/article/view/52919
Description
Summary:Few studies try to explain the effects in tropical lotic ecosystems of an increase in water temperature on the shredding activity of invertebrate shredders, particularly in association with the quality of the leaf litter and the degree of litter conditioning. Therefore, the aims of this study were as follows: i) to better understand how this key invertebrate shredder group affects the decomposition of different species of leaf litter under gradual increases in temperature and microbial conditioning; and ii) to verify the possible consequences on leaf mass loss (LML). Three species of leaf litter were used in two experiments. In experiment I, the litters of three species (Protium spruceanum, Richeria grandis and Inga laurina) at three conditioning levels (1, 7, 14 days) were tested under five different temperatures (20, 22, 24, 26 and 28°C). In experiment II, the leaf litters of three species were used, without conditioning, under four temperatures (20, 22, 26 and 27°C). The shredding performed by Phylloicus sp. was largely dependent on the lignin and cellulose concentrations in each leaf species, independent of conditioning. The presence or absence of conditioning may cause the shredders to use different energy compensation strategies in response to the temperature increases.
ISSN:1679-9283
1807-863X