An Investigation of Optimum NLC-Sunscreen Formulation Using Taguchi Analysis

This study used three kinds of wax and three kinds of oil, with fixed mixture ratio including UV-blocking materials of ethylhexyl methoxycinnamate, oxybenzone, and avobenzone, and applied hot high-pressure homogenization process to prepare nanolipid sunscreen formulations. The measured particle size...

Full description

Bibliographic Details
Main Authors: Pao Chi Chen, Jun-Wei Huang, Jimmy Pang
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2013/463732
Description
Summary:This study used three kinds of wax and three kinds of oil, with fixed mixture ratio including UV-blocking materials of ethylhexyl methoxycinnamate, oxybenzone, and avobenzone, and applied hot high-pressure homogenization process to prepare nanolipid sunscreen formulations. The measured particle size of the sunscreen formulations was 100~300 nm around PDI of 0.2 having a moderate polydisperse system. The distribution of zeta potential was −50 mV to −35 mV, showing a stable system. The UV light-absorbing range of 9 groups of sunscreen formulations was 275 nm~380 nm ranging within UVA and UVB. The rheological analysis found that the viscosity change is shear, thinning exhibiting colloid behavior. Taguchi analysis found that the optimum combinations are the carnauba wax and the blackcurrant oil combination for crystallinity and the beeswax and CPG oil for UV absorption. In addition, UV-blocking ability shows that the SPF was 51.5 and PFA was three stars for SU9 formulation. Finally, the effect of temperature on the properties of sunscreen formulations was also explored.
ISSN:1687-4110
1687-4129