The planar limit of N $$ \mathcal{N} $$ = 2 chiral correlators
Abstract We derive the planar limit of 2- and 3-point functions of single-trace chiral primary operators of N $$ \mathcal{N} $$ = 2 SQCD on S 4, to all orders in the ’t Hooft coupling. In order to do so, we first obtain a combinatorial expression for the planar free energy of a hermitian matrix mode...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-08-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | https://doi.org/10.1007/JHEP08(2021)032 |
id |
doaj-7eb34537f17d4683be24bd7532cf0503 |
---|---|
record_format |
Article |
spelling |
doaj-7eb34537f17d4683be24bd7532cf05032021-08-15T11:45:32ZengSpringerOpenJournal of High Energy Physics1029-84792021-08-012021812010.1007/JHEP08(2021)032The planar limit of N $$ \mathcal{N} $$ = 2 chiral correlatorsBartomeu Fiol0Alan Rios Fukelman1Departament de Física Quàntica i Astrofísica i Institut de Ciències del Cosmos, Universitat de BarcelonaDepartament de Física Quàntica i Astrofísica i Institut de Ciències del Cosmos, Universitat de BarcelonaAbstract We derive the planar limit of 2- and 3-point functions of single-trace chiral primary operators of N $$ \mathcal{N} $$ = 2 SQCD on S 4, to all orders in the ’t Hooft coupling. In order to do so, we first obtain a combinatorial expression for the planar free energy of a hermitian matrix model with an infinite number of arbitrary single and double trace terms in the potential; this solution might have applications in many other contexts. We then use these results to evaluate the analogous planar correlation functions on ℝ4. Specifically, we compute all the terms with a single value of the ζ function for a few planar 2- and 3-point functions, and conjecture general formulas for these terms for all 2- and 3-point functions on ℝ4.https://doi.org/10.1007/JHEP08(2021)0321/N ExpansionSupersymmetric Gauge Theory |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Bartomeu Fiol Alan Rios Fukelman |
spellingShingle |
Bartomeu Fiol Alan Rios Fukelman The planar limit of N $$ \mathcal{N} $$ = 2 chiral correlators Journal of High Energy Physics 1/N Expansion Supersymmetric Gauge Theory |
author_facet |
Bartomeu Fiol Alan Rios Fukelman |
author_sort |
Bartomeu Fiol |
title |
The planar limit of N $$ \mathcal{N} $$ = 2 chiral correlators |
title_short |
The planar limit of N $$ \mathcal{N} $$ = 2 chiral correlators |
title_full |
The planar limit of N $$ \mathcal{N} $$ = 2 chiral correlators |
title_fullStr |
The planar limit of N $$ \mathcal{N} $$ = 2 chiral correlators |
title_full_unstemmed |
The planar limit of N $$ \mathcal{N} $$ = 2 chiral correlators |
title_sort |
planar limit of n $$ \mathcal{n} $$ = 2 chiral correlators |
publisher |
SpringerOpen |
series |
Journal of High Energy Physics |
issn |
1029-8479 |
publishDate |
2021-08-01 |
description |
Abstract We derive the planar limit of 2- and 3-point functions of single-trace chiral primary operators of N $$ \mathcal{N} $$ = 2 SQCD on S 4, to all orders in the ’t Hooft coupling. In order to do so, we first obtain a combinatorial expression for the planar free energy of a hermitian matrix model with an infinite number of arbitrary single and double trace terms in the potential; this solution might have applications in many other contexts. We then use these results to evaluate the analogous planar correlation functions on ℝ4. Specifically, we compute all the terms with a single value of the ζ function for a few planar 2- and 3-point functions, and conjecture general formulas for these terms for all 2- and 3-point functions on ℝ4. |
topic |
1/N Expansion Supersymmetric Gauge Theory |
url |
https://doi.org/10.1007/JHEP08(2021)032 |
work_keys_str_mv |
AT bartomeufiol theplanarlimitofnmathcaln2chiralcorrelators AT alanriosfukelman theplanarlimitofnmathcaln2chiralcorrelators AT bartomeufiol planarlimitofnmathcaln2chiralcorrelators AT alanriosfukelman planarlimitofnmathcaln2chiralcorrelators |
_version_ |
1721206419961675776 |