Molecularly Imprinted Nanofiber Film for Sensitive Sensing 2,4,6-Tribromophenol

The determination of brominated flame retardants is of great importance, but remains a challenge. Particularly, universal and facile approaches are limited. Here we report a new general approach, combining molecular imprinting and electrospinning, for the efficient and facile imprinting sensor of 2,...

Full description

Bibliographic Details
Main Authors: Limei Huang, Meishan Li, Dan Wu, Xiuling Ma, Zhenyue Wu, Shengchang Xiang, Sheng Chen
Format: Article
Language:English
Published: MDPI AG 2016-06-01
Series:Polymers
Subjects:
Online Access:http://www.mdpi.com/2073-4360/8/6/222
Description
Summary:The determination of brominated flame retardants is of great importance, but remains a challenge. Particularly, universal and facile approaches are limited. Here we report a new general approach, combining molecular imprinting and electrospinning, for the efficient and facile imprinting sensor of 2,4,6-tribromophenol (TBP), which was used as a “novel” brominated flame retardant. With TBP as the template molecular, β-cyclodextrin (β-CD) as the functional monomer, and poly-vinylbutyral (PVB) as the electro-spinning matrix, the nanofiber film was deposited on the glassy carbon electrode (GCE) via electrospinning technique directly. The β-CD-PVB/GCE sensor system exhibited excellent TBP sensing performances, such as a low detection limit (6.29 × 10−10 mol·L−1) at room temperature, selective recognition to TBP/phenol/4-methyl-phenol, and good regeneration performance. The approach of fabricating a molecular imprinting nanofiber sensor may shed new light in the detection of other phenolic pollutants.
ISSN:2073-4360