Dynamics of the Almost Periodic Discrete Mackey–Glass Model

This paper is concerned with a class of the discrete Mackey–Glass model that describes the process of the production of blood cells. Prior to proceeding to the main results, we prove the boundedness and extinction of its solutions. By means of the contraction mapping principle and under appropriate...

Full description

Bibliographic Details
Main Authors: Zhijian Yao, Jehad Alzabut, Debaldev Jana
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/6/12/333
Description
Summary:This paper is concerned with a class of the discrete Mackey–Glass model that describes the process of the production of blood cells. Prior to proceeding to the main results, we prove the boundedness and extinction of its solutions. By means of the contraction mapping principle and under appropriate assumptions, we prove the existence of almost periodic positive solutions. Furthermore and by the implementation of the discrete Lyapunov functional, sufficient conditions are established for the exponential convergence of the almost periodic positive solution. Examples, as well as numerical simulations are illustrated to demonstrate the effectiveness of the theoretical findings of the paper. Our results are new and generalize some previously-reported results in the literature.
ISSN:2227-7390