Predicting Maximal Gaps in Sets of Primes

Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>&gt;</mo> <mi>r</mi> <mo>&#8805;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>...

Full description

Bibliographic Details
Main Authors: Alexei Kourbatov, Marek Wolf
Format: Article
Language:English
Published: MDPI AG 2019-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/5/400
id doaj-7fa146c204554937ba41a1995021ab71
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Alexei Kourbatov
Marek Wolf
spellingShingle Alexei Kourbatov
Marek Wolf
Predicting Maximal Gaps in Sets of Primes
Mathematics
Cramér conjecture
Gumbel distribution
prime gap
prime <i>k</i>-tuple
residue class
Shanks conjecture
totient
author_facet Alexei Kourbatov
Marek Wolf
author_sort Alexei Kourbatov
title Predicting Maximal Gaps in Sets of Primes
title_short Predicting Maximal Gaps in Sets of Primes
title_full Predicting Maximal Gaps in Sets of Primes
title_fullStr Predicting Maximal Gaps in Sets of Primes
title_full_unstemmed Predicting Maximal Gaps in Sets of Primes
title_sort predicting maximal gaps in sets of primes
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2019-05-01
description Let <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>&gt;</mo> <mi>r</mi> <mo>&#8805;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> be coprime integers. Let <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="double-struck">P</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi mathvariant="double-struck">P</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi mathvariant="script">H</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> be an increasing sequence of primes <i>p</i> satisfying two conditions: (i) <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>&#8801;</mo> <mi>r</mi> </mrow> </semantics> </math> </inline-formula> (mod <i>q</i>) <i>and</i> (ii) <i>p</i> starts a prime <i>k</i>-tuple with a given pattern <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">H</mi></semantics></math></inline-formula>. Let <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#960;</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> be the number of primes in <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="double-struck">P</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> not exceeding <i>x</i>. We heuristically derive formulas predicting the growth trend of the maximal gap <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msub> <mo movablelimits="true" form="prefix">max</mo> <mrow> <msup> <mi>p</mi> <mo>&#8242;</mo> </msup> <mo>&#8804;</mo> <mi>x</mi> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <msup> <mi>p</mi> <mo>&#8242;</mo> </msup> <mo>&#8722;</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> between successive primes <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>,</mo> <msup> <mi>p</mi> <mo>&#8242;</mo> </msup> <mo>&#8712;</mo> <msub> <mi mathvariant="double-struck">P</mi> <mi>c</mi></msub></mrow></semantics></math></inline-formula>. Extensive computations for primes up to <inline-formula> <math display="inline"> <semantics> <msup> <mn>10</mn> <mn>14</mn> </msup> </semantics> </math> </inline-formula> show that a simple trend formula <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>&#8764;</mo> <mfrac> <mi>x</mi> <mrow> <msub> <mi>&#960;</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </mfrac> <mo>&#183;</mo> <mrow> <mo stretchy="false">(</mo> <mi>log</mi> <msub> <mi>&#960;</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>+</mo> <msub> <mi>O</mi> <mi>k</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> works well for maximal gaps between initial primes of <i>k</i>-tuples with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> (e.g., twin primes, prime triplets, etc.) in residue class <i>r</i> (mod <i>q</i>). For <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn></mrow></semantics></math></inline-formula>, however, a more sophisticated formula <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>&#8764;</mo> <mfrac> <mi>x</mi> <mrow> <msub> <mi>&#960;</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </mfrac> <mo>&#183;</mo> <mfenced separators="" open="(" close=")"> <mi>log</mi> <mfrac> <mrow> <msubsup> <mi>&#960;</mi> <mrow> <mi>c</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> <mi>x</mi> </mfrac> <mo>+</mo> <mi>O</mi> <mrow> <mo stretchy="false">(</mo> <mi>log</mi> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> </mfenced> </mrow> </semantics> </math> </inline-formula> gives a better prediction of maximal gap sizes. The latter includes the important special case of maximal gaps in the sequence of all primes (<inline-formula><math display="inline"><semantics><mrow><mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn></mrow></semantics></math></inline-formula>). The distribution of appropriately rescaled maximal gaps <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is close to the Gumbel extreme value distribution. Computations suggest that almost all maximal gaps satisfy a generalized strong form of Cram&#233;r&#8217;s conjecture. We also conjecture that the number of maximal gaps between primes in <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="double-struck">P</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> below <i>x</i> is <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>O</mi> <mi>k</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>log</mi> <mi>x</mi> <mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>.
topic Cramér conjecture
Gumbel distribution
prime gap
prime <i>k</i>-tuple
residue class
Shanks conjecture
totient
url https://www.mdpi.com/2227-7390/7/5/400
work_keys_str_mv AT alexeikourbatov predictingmaximalgapsinsetsofprimes
AT marekwolf predictingmaximalgapsinsetsofprimes
_version_ 1725061696063537152
spelling doaj-7fa146c204554937ba41a1995021ab712020-11-25T01:36:39ZengMDPI AGMathematics2227-73902019-05-017540010.3390/math7050400math7050400Predicting Maximal Gaps in Sets of PrimesAlexei Kourbatov0Marek Wolf1JavaScripter.net, 15127 NE 24th St., #578, Redmond, WA 98052, USAFaculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszynski University, Wóycickiego 1/3, Bldg. 21, PL-01-938 Warsaw, PolandLet <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>&gt;</mo> <mi>r</mi> <mo>&#8805;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> be coprime integers. Let <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi mathvariant="double-struck">P</mi> <mi>c</mi> </msub> <mo>=</mo> <msub> <mi mathvariant="double-struck">P</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>q</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mi mathvariant="script">H</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> be an increasing sequence of primes <i>p</i> satisfying two conditions: (i) <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>&#8801;</mo> <mi>r</mi> </mrow> </semantics> </math> </inline-formula> (mod <i>q</i>) <i>and</i> (ii) <i>p</i> starts a prime <i>k</i>-tuple with a given pattern <inline-formula> <math display="inline"> <semantics> <mi mathvariant="script">H</mi></semantics></math></inline-formula>. Let <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>&#960;</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> be the number of primes in <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="double-struck">P</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> not exceeding <i>x</i>. We heuristically derive formulas predicting the growth trend of the maximal gap <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msub> <mo movablelimits="true" form="prefix">max</mo> <mrow> <msup> <mi>p</mi> <mo>&#8242;</mo> </msup> <mo>&#8804;</mo> <mi>x</mi> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <msup> <mi>p</mi> <mo>&#8242;</mo> </msup> <mo>&#8722;</mo> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> between successive primes <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>,</mo> <msup> <mi>p</mi> <mo>&#8242;</mo> </msup> <mo>&#8712;</mo> <msub> <mi mathvariant="double-struck">P</mi> <mi>c</mi></msub></mrow></semantics></math></inline-formula>. Extensive computations for primes up to <inline-formula> <math display="inline"> <semantics> <msup> <mn>10</mn> <mn>14</mn> </msup> </semantics> </math> </inline-formula> show that a simple trend formula <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>&#8764;</mo> <mfrac> <mi>x</mi> <mrow> <msub> <mi>&#960;</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </mfrac> <mo>&#183;</mo> <mrow> <mo stretchy="false">(</mo> <mi>log</mi> <msub> <mi>&#960;</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>+</mo> <msub> <mi>O</mi> <mi>k</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> works well for maximal gaps between initial primes of <i>k</i>-tuples with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> (e.g., twin primes, prime triplets, etc.) in residue class <i>r</i> (mod <i>q</i>). For <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn></mrow></semantics></math></inline-formula>, however, a more sophisticated formula <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>&#8764;</mo> <mfrac> <mi>x</mi> <mrow> <msub> <mi>&#960;</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </mfrac> <mo>&#183;</mo> <mfenced separators="" open="(" close=")"> <mi>log</mi> <mfrac> <mrow> <msubsup> <mi>&#960;</mi> <mrow> <mi>c</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> <mi>x</mi> </mfrac> <mo>+</mo> <mi>O</mi> <mrow> <mo stretchy="false">(</mo> <mi>log</mi> <mi>q</mi> <mo stretchy="false">)</mo> </mrow> </mfenced> </mrow> </semantics> </math> </inline-formula> gives a better prediction of maximal gap sizes. The latter includes the important special case of maximal gaps in the sequence of all primes (<inline-formula><math display="inline"><semantics><mrow><mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>1</mn></mrow></semantics></math></inline-formula>). The distribution of appropriately rescaled maximal gaps <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>G</mi> <mi>c</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is close to the Gumbel extreme value distribution. Computations suggest that almost all maximal gaps satisfy a generalized strong form of Cram&#233;r&#8217;s conjecture. We also conjecture that the number of maximal gaps between primes in <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="double-struck">P</mi> <mi>c</mi> </msub> </semantics> </math> </inline-formula> below <i>x</i> is <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>O</mi> <mi>k</mi> </msub> <mrow> <mo stretchy="false">(</mo> <mi>log</mi> <mi>x</mi> <mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/7/5/400Cramér conjectureGumbel distributionprime gapprime <i>k</i>-tupleresidue classShanks conjecturetotient