Shaped Beam Pattern Synthesis of Antenna Arrays Using Composite Differential Evolution with Eigenvector-Based Crossover Operator

This paper addresses the problem of designing shaped beam patterns with arbitrary arrays subject to constraints. The constraints could include the sidelobe level suppression in specified angular intervals, the mainlobe halfpower beamwidth, and the predefined number of elements. In this paper, we pro...

Full description

Bibliographic Details
Main Author: Sotirios K. Goudos
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:International Journal of Antennas and Propagation
Online Access:http://dx.doi.org/10.1155/2015/295012
Description
Summary:This paper addresses the problem of designing shaped beam patterns with arbitrary arrays subject to constraints. The constraints could include the sidelobe level suppression in specified angular intervals, the mainlobe halfpower beamwidth, and the predefined number of elements. In this paper, we propose a new Differential Evolution algorithm, which combines Composite DE with an eigenvector-based crossover operator (CODE-EIG). This operator utilizes eigenvectors of covariance matrix of individual solutions, which makes the crossover rotationally invariant. We apply this novel design method to shaped beam pattern synthesis for linear and conformal arrays. We compare this algorithm with other popular algorithms and DE variants. The results show CODE-EIG outperforms the other DE algorithms in terms of statistical results and convergence speed.
ISSN:1687-5869
1687-5877