Stimuli-Magnitude-Adaptive Sample Selection for Data-Driven Haptic Modeling

Data-driven haptic modeling is an emerging technique where contact dynamics are simulated and interpolated based on a generic input-output matching model identified by data sensed from interaction with target physical objects. In data-driven modeling, selecting representative samples from a large se...

Full description

Bibliographic Details
Main Authors: Arsen Abdulali, Waseem Hassan, Seokhee Jeon
Format: Article
Language:English
Published: MDPI AG 2016-06-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/18/6/222
Description
Summary:Data-driven haptic modeling is an emerging technique where contact dynamics are simulated and interpolated based on a generic input-output matching model identified by data sensed from interaction with target physical objects. In data-driven modeling, selecting representative samples from a large set of data in a way that they can efficiently and accurately describe the whole dataset has been a long standing problem. This paper presents a new algorithm for the sample selection where the variances of output are observed for selecting representative input-output samples in order to ensure the quality of output prediction. The main idea is that representative pairs of input-output are chosen so that the ratio of the standard deviation to the mean of the corresponding output group does not exceed an application-dependent threshold. This output- and standard deviation-based sample selection is very effective in applications where the variance or relative error of the output should be kept within a certain threshold. This threshold is used for partitioning the input space using Binary Space Partitioning-tree (BSP-tree) and k-means algorithms. We apply the new approach to data-driven haptic modeling scenario where the relative error of the output prediction result should be less than a perceptual threshold. For evaluation, the proposed algorithm is compared to two state-of-the-art sample selection algorithms for regression tasks. Four kinds of haptic related behavior–force datasets are tested. The results showed that the proposed algorithm outperformed the others in terms of output-approximation quality and computational complexity.
ISSN:1099-4300