MOXD2, a Gene Possibly Associated with Olfaction, Is Frequently Inactivated in Birds.

Vertebrate MOXD2 encodes a monooxygenase DBH-like 2 protein that could be involved in neurotransmitter metabolism, potentially during olfactory transduction. Loss of MOXD2 in apes and whales has been proposed to be associated with evolution of olfaction in these clades. We analyzed 57 bird genomes t...

Full description

Bibliographic Details
Main Authors: Chul Jun Goh, Dongjin Choi, Dong-Bin Park, Hyein Kim, Yoonsoo Hahn
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4830563?pdf=render
Description
Summary:Vertebrate MOXD2 encodes a monooxygenase DBH-like 2 protein that could be involved in neurotransmitter metabolism, potentially during olfactory transduction. Loss of MOXD2 in apes and whales has been proposed to be associated with evolution of olfaction in these clades. We analyzed 57 bird genomes to identify MOXD2 sequences and found frequent loss of MOXD2 in 38 birds. Among the 57 birds, 19 species appeared to have an intact MOXD2 that encoded a full-length protein; 32 birds had a gene with open reading frame-disrupting point mutations and/or exon deletions; and the remaining 6 species did not show any MOXD2 sequence, suggesting a whole-gene deletion. Notably, among 10 passerine birds examined, 9 species shared a common genomic deletion that spanned several exons, implying the gene loss occurred in a common ancestor of these birds. However, 2 closely related penguin species, each of which had an inactive MOXD2, did not share any mutation, suggesting an independent loss after their divergence. Distribution of the 38 birds without an intact MOXD2 in the bird phylogenetic tree clearly indicates that MOXD2 loss is widespread and independent in bird lineages. We propose that widespread MOXD2 loss in some bird lineages may be implicated in the evolution of olfactory perception in these birds.
ISSN:1932-6203