Evaluation of energy expenditure in forward and backward movements performed by soccer referees

The aim of this study was to measure the energy expenditure for locomotor activities usually performed by soccer referees during a match (walking, jogging, and running) under laboratory conditions, and to compare forward with backward movements. The sample was composed by 10 male soccer referees, ag...

Full description

Bibliographic Details
Main Authors: M.R. Paes, R. Fernandez
Format: Article
Language:English
Published: Associação Brasileira de Divulgação Científica 2016-01-01
Series:Brazilian Journal of Medical and Biological Research
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2016000500702&lng=en&tlng=en
Description
Summary:The aim of this study was to measure the energy expenditure for locomotor activities usually performed by soccer referees during a match (walking, jogging, and running) under laboratory conditions, and to compare forward with backward movements. The sample was composed by 10 male soccer referees, age 29±7.8 years, body mass 77.5±6.2 kg, stature 1.78±0.07 m and professional experience of 7.33±4.92 years. Referees were evaluated on two separate occasions. On the first day, maximal oxygen uptake (VO2max) was determined by a maximal treadmill test, and on the second day, the oxygen consumption was determined in different speeds of forward and backward movements. The mean VO2max was 41.20±3.60 mL·kg-1·min-1 and the mean heart rate achieved in the last stage of the test was 190.5±7.9 bpm. When results of forward and backward movements were compared at 1.62 m/s (walking speed), we found significant differences in VO2, in metabolic equivalents, and in kcal. However, the same parameters in forward and backward movements at jogging velocities (2.46 m/s) were not significantly different, showing that these motor activities have similar intensity. Backward movements at velocities equivalent to walking and jogging are moderate-intensity activities, with energy expenditure less than 9 kcal. Energy expenditure was overestimated by at least 35% when calculated by mathematical equations. In summary, we observed that backward movements are not high-intensity activities as has been commonly reported, and when calculated using equations available in the literature, energy expenditure was overestimated compared to the values obtained by indirect calorimetry.
ISSN:1414-431X