Linking method for periodic non-autonomous fourth-order differential equations with superquadratic potentials

By means of the Schechter's Linking method, we study the existence of 2T-periodic solutions of the non-autonomous fourth-order ordinary differential equation $$ u''''-Au''-Bu-V_u(t,u)=0 $$ where $A>0$, $B>0$, $V(t,u)in mathbb{C}^1(mathbb{R}imesmathbb{R}...

Full description

Bibliographic Details
Main Authors: Chengyue Li, Changhua Shi
Format: Article
Language:English
Published: Texas State University 2009-09-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2009/120/abstr.html
id doaj-806b8b1c45d1432c96b81f259654bbc0
record_format Article
spelling doaj-806b8b1c45d1432c96b81f259654bbc02020-11-24T23:20:25ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912009-09-012009120,111Linking method for periodic non-autonomous fourth-order differential equations with superquadratic potentialsChengyue LiChanghua ShiBy means of the Schechter's Linking method, we study the existence of 2T-periodic solutions of the non-autonomous fourth-order ordinary differential equation $$ u''''-Au''-Bu-V_u(t,u)=0 $$ where $A>0$, $B>0$, $V(t,u)in mathbb{C}^1(mathbb{R}imesmathbb{R}, mathbb{R})$ is 2T-periodic in t and satisfies either $0<heta V(t,u) leq u V_u(t,u)$ with $heta>2$, or $u V_u(t,u)-2V(t,u)geq d_3|u|^r$ with $rgeq 1$. http://ejde.math.txstate.edu/Volumes/2009/120/abstr.htmlPeriodic solutionsfourth-order differential equationslinking theoremcritical points
collection DOAJ
language English
format Article
sources DOAJ
author Chengyue Li
Changhua Shi
spellingShingle Chengyue Li
Changhua Shi
Linking method for periodic non-autonomous fourth-order differential equations with superquadratic potentials
Electronic Journal of Differential Equations
Periodic solutions
fourth-order differential equations
linking theorem
critical points
author_facet Chengyue Li
Changhua Shi
author_sort Chengyue Li
title Linking method for periodic non-autonomous fourth-order differential equations with superquadratic potentials
title_short Linking method for periodic non-autonomous fourth-order differential equations with superquadratic potentials
title_full Linking method for periodic non-autonomous fourth-order differential equations with superquadratic potentials
title_fullStr Linking method for periodic non-autonomous fourth-order differential equations with superquadratic potentials
title_full_unstemmed Linking method for periodic non-autonomous fourth-order differential equations with superquadratic potentials
title_sort linking method for periodic non-autonomous fourth-order differential equations with superquadratic potentials
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2009-09-01
description By means of the Schechter's Linking method, we study the existence of 2T-periodic solutions of the non-autonomous fourth-order ordinary differential equation $$ u''''-Au''-Bu-V_u(t,u)=0 $$ where $A>0$, $B>0$, $V(t,u)in mathbb{C}^1(mathbb{R}imesmathbb{R}, mathbb{R})$ is 2T-periodic in t and satisfies either $0<heta V(t,u) leq u V_u(t,u)$ with $heta>2$, or $u V_u(t,u)-2V(t,u)geq d_3|u|^r$ with $rgeq 1$.
topic Periodic solutions
fourth-order differential equations
linking theorem
critical points
url http://ejde.math.txstate.edu/Volumes/2009/120/abstr.html
work_keys_str_mv AT chengyueli linkingmethodforperiodicnonautonomousfourthorderdifferentialequationswithsuperquadraticpotentials
AT changhuashi linkingmethodforperiodicnonautonomousfourthorderdifferentialequationswithsuperquadraticpotentials
_version_ 1725574933344419840