Novel Two-Dimensional Layered MoSi<sub>2</sub>Z<sub>4</sub> (Z = P, As): New Promising Optoelectronic Materials
Very recently, two new two-dimensional (2D) layered semi-conducting materials MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics&...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-02-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/11/3/559 |
id |
doaj-8071b81bfafd4a9b9eda518677e15183 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hui Yao Chao Zhang Qiang Wang Jianwei Li Yunjin Yu Fuming Xu Bin Wang Yadong Wei |
spellingShingle |
Hui Yao Chao Zhang Qiang Wang Jianwei Li Yunjin Yu Fuming Xu Bin Wang Yadong Wei Novel Two-Dimensional Layered MoSi<sub>2</sub>Z<sub>4</sub> (Z = P, As): New Promising Optoelectronic Materials Nanomaterials DFT remarkable optical absorption superior external quantum efficiency optoelectronic devices |
author_facet |
Hui Yao Chao Zhang Qiang Wang Jianwei Li Yunjin Yu Fuming Xu Bin Wang Yadong Wei |
author_sort |
Hui Yao |
title |
Novel Two-Dimensional Layered MoSi<sub>2</sub>Z<sub>4</sub> (Z = P, As): New Promising Optoelectronic Materials |
title_short |
Novel Two-Dimensional Layered MoSi<sub>2</sub>Z<sub>4</sub> (Z = P, As): New Promising Optoelectronic Materials |
title_full |
Novel Two-Dimensional Layered MoSi<sub>2</sub>Z<sub>4</sub> (Z = P, As): New Promising Optoelectronic Materials |
title_fullStr |
Novel Two-Dimensional Layered MoSi<sub>2</sub>Z<sub>4</sub> (Z = P, As): New Promising Optoelectronic Materials |
title_full_unstemmed |
Novel Two-Dimensional Layered MoSi<sub>2</sub>Z<sub>4</sub> (Z = P, As): New Promising Optoelectronic Materials |
title_sort |
novel two-dimensional layered mosi<sub>2</sub>z<sub>4</sub> (z = p, as): new promising optoelectronic materials |
publisher |
MDPI AG |
series |
Nanomaterials |
issn |
2079-4991 |
publishDate |
2021-02-01 |
description |
Very recently, two new two-dimensional (2D) layered semi-conducting materials MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and WSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> were successfully synthesized in experiments, and a large family of these two 2D materials, namely MA<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>, was also predicted theoretically (Science, 369, 670 (2020)). Motivated by this exciting family, in this work, we systematically investigate the mechanical, electronic and optical properties of monolayer and bilayer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>P<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>As<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> by using the first-principles calculation method. Numerical results indicate that both monolayer and bilayer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> (Z = P, As) present good structural stability, isotropic mechanical parameters, moderate bandgap, favorable carrier mobilities, remarkable optical absorption, superior photon responsivity and external quantum efficiency. Especially, due to the wave-functions of band edges dominated by <i>d</i> orbital of the middle-layer Mo atoms are screened effectively, the bandgap and optical absorption hardly depend on the number of layers, providing an added convenience in the experimental fabrication of few-layer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>-based electronic and optoelectronic devices. We also build a monolayer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>-based 2D optoelectronic device, and quantitatively evaluate the photocurrent as a function of energy and polarization angle of the incident light. Our investigation verifies the excellent performance of a few-layer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and expands their potential application in nanoscale electronic and optoelectronic devices. |
topic |
DFT remarkable optical absorption superior external quantum efficiency optoelectronic devices |
url |
https://www.mdpi.com/2079-4991/11/3/559 |
work_keys_str_mv |
AT huiyao noveltwodimensionallayeredmosisub2subzsub4subzpasnewpromisingoptoelectronicmaterials AT chaozhang noveltwodimensionallayeredmosisub2subzsub4subzpasnewpromisingoptoelectronicmaterials AT qiangwang noveltwodimensionallayeredmosisub2subzsub4subzpasnewpromisingoptoelectronicmaterials AT jianweili noveltwodimensionallayeredmosisub2subzsub4subzpasnewpromisingoptoelectronicmaterials AT yunjinyu noveltwodimensionallayeredmosisub2subzsub4subzpasnewpromisingoptoelectronicmaterials AT fumingxu noveltwodimensionallayeredmosisub2subzsub4subzpasnewpromisingoptoelectronicmaterials AT binwang noveltwodimensionallayeredmosisub2subzsub4subzpasnewpromisingoptoelectronicmaterials AT yadongwei noveltwodimensionallayeredmosisub2subzsub4subzpasnewpromisingoptoelectronicmaterials |
_version_ |
1724252411030142976 |
spelling |
doaj-8071b81bfafd4a9b9eda518677e151832021-02-25T00:01:45ZengMDPI AGNanomaterials2079-49912021-02-011155955910.3390/nano11030559Novel Two-Dimensional Layered MoSi<sub>2</sub>Z<sub>4</sub> (Z = P, As): New Promising Optoelectronic MaterialsHui Yao0Chao Zhang1Qiang Wang2Jianwei Li3Yunjin Yu4Fuming Xu5Bin Wang6Yadong Wei7College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, ChinaBeijing Computational Science Research Center, Beijing 100193, ChinaCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, ChinaCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, ChinaCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, ChinaCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, ChinaCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, ChinaCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, ChinaVery recently, two new two-dimensional (2D) layered semi-conducting materials MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and WSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> were successfully synthesized in experiments, and a large family of these two 2D materials, namely MA<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>, was also predicted theoretically (Science, 369, 670 (2020)). Motivated by this exciting family, in this work, we systematically investigate the mechanical, electronic and optical properties of monolayer and bilayer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>P<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>As<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> by using the first-principles calculation method. Numerical results indicate that both monolayer and bilayer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> (Z = P, As) present good structural stability, isotropic mechanical parameters, moderate bandgap, favorable carrier mobilities, remarkable optical absorption, superior photon responsivity and external quantum efficiency. Especially, due to the wave-functions of band edges dominated by <i>d</i> orbital of the middle-layer Mo atoms are screened effectively, the bandgap and optical absorption hardly depend on the number of layers, providing an added convenience in the experimental fabrication of few-layer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>-based electronic and optoelectronic devices. We also build a monolayer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>-based 2D optoelectronic device, and quantitatively evaluate the photocurrent as a function of energy and polarization angle of the incident light. Our investigation verifies the excellent performance of a few-layer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and expands their potential application in nanoscale electronic and optoelectronic devices.https://www.mdpi.com/2079-4991/11/3/559DFTremarkable optical absorptionsuperior external quantum efficiencyoptoelectronic devices |