Novel Two-Dimensional Layered MoSi<sub>2</sub>Z<sub>4</sub> (Z = P, As): New Promising Optoelectronic Materials

Very recently, two new two-dimensional (2D) layered semi-conducting materials MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics&...

Full description

Bibliographic Details
Main Authors: Hui Yao, Chao Zhang, Qiang Wang, Jianwei Li, Yunjin Yu, Fuming Xu, Bin Wang, Yadong Wei
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Nanomaterials
Subjects:
DFT
Online Access:https://www.mdpi.com/2079-4991/11/3/559
id doaj-8071b81bfafd4a9b9eda518677e15183
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Hui Yao
Chao Zhang
Qiang Wang
Jianwei Li
Yunjin Yu
Fuming Xu
Bin Wang
Yadong Wei
spellingShingle Hui Yao
Chao Zhang
Qiang Wang
Jianwei Li
Yunjin Yu
Fuming Xu
Bin Wang
Yadong Wei
Novel Two-Dimensional Layered MoSi<sub>2</sub>Z<sub>4</sub> (Z = P, As): New Promising Optoelectronic Materials
Nanomaterials
DFT
remarkable optical absorption
superior external quantum efficiency
optoelectronic devices
author_facet Hui Yao
Chao Zhang
Qiang Wang
Jianwei Li
Yunjin Yu
Fuming Xu
Bin Wang
Yadong Wei
author_sort Hui Yao
title Novel Two-Dimensional Layered MoSi<sub>2</sub>Z<sub>4</sub> (Z = P, As): New Promising Optoelectronic Materials
title_short Novel Two-Dimensional Layered MoSi<sub>2</sub>Z<sub>4</sub> (Z = P, As): New Promising Optoelectronic Materials
title_full Novel Two-Dimensional Layered MoSi<sub>2</sub>Z<sub>4</sub> (Z = P, As): New Promising Optoelectronic Materials
title_fullStr Novel Two-Dimensional Layered MoSi<sub>2</sub>Z<sub>4</sub> (Z = P, As): New Promising Optoelectronic Materials
title_full_unstemmed Novel Two-Dimensional Layered MoSi<sub>2</sub>Z<sub>4</sub> (Z = P, As): New Promising Optoelectronic Materials
title_sort novel two-dimensional layered mosi<sub>2</sub>z<sub>4</sub> (z = p, as): new promising optoelectronic materials
publisher MDPI AG
series Nanomaterials
issn 2079-4991
publishDate 2021-02-01
description Very recently, two new two-dimensional (2D) layered semi-conducting materials MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and WSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> were successfully synthesized in experiments, and a large family of these two 2D materials, namely MA<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>, was also predicted theoretically (Science, 369, 670 (2020)). Motivated by this exciting family, in this work, we systematically investigate the mechanical, electronic and optical properties of monolayer and bilayer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>P<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>As<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> by using the first-principles calculation method. Numerical results indicate that both monolayer and bilayer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> (Z = P, As) present good structural stability, isotropic mechanical parameters, moderate bandgap, favorable carrier mobilities, remarkable optical absorption, superior photon responsivity and external quantum efficiency. Especially, due to the wave-functions of band edges dominated by <i>d</i> orbital of the middle-layer Mo atoms are screened effectively, the bandgap and optical absorption hardly depend on the number of layers, providing an added convenience in the experimental fabrication of few-layer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>-based electronic and optoelectronic devices. We also build a monolayer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>-based 2D optoelectronic device, and quantitatively evaluate the photocurrent as a function of energy and polarization angle of the incident light. Our investigation verifies the excellent performance of a few-layer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and expands their potential application in nanoscale electronic and optoelectronic devices.
topic DFT
remarkable optical absorption
superior external quantum efficiency
optoelectronic devices
url https://www.mdpi.com/2079-4991/11/3/559
work_keys_str_mv AT huiyao noveltwodimensionallayeredmosisub2subzsub4subzpasnewpromisingoptoelectronicmaterials
AT chaozhang noveltwodimensionallayeredmosisub2subzsub4subzpasnewpromisingoptoelectronicmaterials
AT qiangwang noveltwodimensionallayeredmosisub2subzsub4subzpasnewpromisingoptoelectronicmaterials
AT jianweili noveltwodimensionallayeredmosisub2subzsub4subzpasnewpromisingoptoelectronicmaterials
AT yunjinyu noveltwodimensionallayeredmosisub2subzsub4subzpasnewpromisingoptoelectronicmaterials
AT fumingxu noveltwodimensionallayeredmosisub2subzsub4subzpasnewpromisingoptoelectronicmaterials
AT binwang noveltwodimensionallayeredmosisub2subzsub4subzpasnewpromisingoptoelectronicmaterials
AT yadongwei noveltwodimensionallayeredmosisub2subzsub4subzpasnewpromisingoptoelectronicmaterials
_version_ 1724252411030142976
spelling doaj-8071b81bfafd4a9b9eda518677e151832021-02-25T00:01:45ZengMDPI AGNanomaterials2079-49912021-02-011155955910.3390/nano11030559Novel Two-Dimensional Layered MoSi<sub>2</sub>Z<sub>4</sub> (Z = P, As): New Promising Optoelectronic MaterialsHui Yao0Chao Zhang1Qiang Wang2Jianwei Li3Yunjin Yu4Fuming Xu5Bin Wang6Yadong Wei7College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, ChinaBeijing Computational Science Research Center, Beijing 100193, ChinaCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, ChinaCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, ChinaCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, ChinaCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, ChinaCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, ChinaCollege of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, ChinaVery recently, two new two-dimensional (2D) layered semi-conducting materials MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and WSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>N<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> were successfully synthesized in experiments, and a large family of these two 2D materials, namely MA<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>, was also predicted theoretically (Science, 369, 670 (2020)). Motivated by this exciting family, in this work, we systematically investigate the mechanical, electronic and optical properties of monolayer and bilayer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>P<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>As<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> by using the first-principles calculation method. Numerical results indicate that both monolayer and bilayer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> (Z = P, As) present good structural stability, isotropic mechanical parameters, moderate bandgap, favorable carrier mobilities, remarkable optical absorption, superior photon responsivity and external quantum efficiency. Especially, due to the wave-functions of band edges dominated by <i>d</i> orbital of the middle-layer Mo atoms are screened effectively, the bandgap and optical absorption hardly depend on the number of layers, providing an added convenience in the experimental fabrication of few-layer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>-based electronic and optoelectronic devices. We also build a monolayer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>-based 2D optoelectronic device, and quantitatively evaluate the photocurrent as a function of energy and polarization angle of the incident light. Our investigation verifies the excellent performance of a few-layer MoSi<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>Z<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> and expands their potential application in nanoscale electronic and optoelectronic devices.https://www.mdpi.com/2079-4991/11/3/559DFTremarkable optical absorptionsuperior external quantum efficiencyoptoelectronic devices