Differential Hyperphosphorylation of Tau-S199, -T231 and -S396 in Organotypic Brain Slices of Alzheimer Mice. A Model to Study Early Tau Hyperphosphorylation Using Okadaic Acid

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder of the brain, characterized by extracellular aggregation of beta-amyloid (Aβ) and hyperphosphorylation of tau causing intraneuronal neurofibrillary tangles (NFTs). There is urgent need to study the interactions between Aβ and tau,...

Full description

Bibliographic Details
Main Authors: Bettina M. Foidl, Christian Humpel
Format: Article
Language:English
Published: Frontiers Media S.A. 2018-04-01
Series:Frontiers in Aging Neuroscience
Subjects:
Online Access:http://journal.frontiersin.org/article/10.3389/fnagi.2018.00113/full
id doaj-8076282a68d1474fb2b81ba8c39d5104
record_format Article
spelling doaj-8076282a68d1474fb2b81ba8c39d51042020-11-24T21:00:34ZengFrontiers Media S.A.Frontiers in Aging Neuroscience1663-43652018-04-011010.3389/fnagi.2018.00113291251Differential Hyperphosphorylation of Tau-S199, -T231 and -S396 in Organotypic Brain Slices of Alzheimer Mice. A Model to Study Early Tau Hyperphosphorylation Using Okadaic AcidBettina M. FoidlChristian HumpelAlzheimer’s disease (AD) is a progressive neurodegenerative disorder of the brain, characterized by extracellular aggregation of beta-amyloid (Aβ) and hyperphosphorylation of tau causing intraneuronal neurofibrillary tangles (NFTs). There is urgent need to study the interactions between Aβ and tau, especially to solve the question of the pathological cascade. In the present study, we aim to develop a model of organotypic brain slices in which both plaque and tau pathology can be examined. Organotypic brain slices (150 μm thick, coronal, at the hippocampal level) from adult (9 month) wildtype (WT, C57BL/6N) and transgenic AD mice (TG, APP_SweDI) were cultured for 2 weeks. To induce tau hyperphosphorylation 100 nM okadaic acid (OA), 10 μM wortmannin (WM) or both were added to the slices. Hyperphosphorylation of tau was tested at tau-S199, tau-T231 and tau-S396 using Western blot. Our data show that in TG mice with plaques a 50 kDa fragment of tau-S396 was hyperphosphorylated and that OA induced hyperphosphorylation of tau-S199. In WT mice (without plaques) OA caused hyperphosphorylation of a 50 kDa and a 38 kDa tau-T231 form and a 25 kDa sdftau-S396 fragment. The N-methyl-D-aspartate (NMDA) antagonist MK801 (1 μM) did not block these effects. Immunohistochemistry showed diffuse increased tau-S396 and tau-T231-like immunoreactivities at the hippocampal level but no formation of NFTs. Confocal microscopy indicated, that pTau-T231 was preferentially located in cytoplasma surrounding nuclei whereas pTau-S396 was found mainly in nerve fibers and strongly associated with plaques. In conclusion we provide a novel in vitro model to study both plaque and tau hyperphosphorylation but not NFTs, which could be useful to study pathological processes in AD and to screen for drugs.http://journal.frontiersin.org/article/10.3389/fnagi.2018.00113/fullokadaic acidAlzheimer’s diseasetau phosphorylationwortmanninorganotypic brain slicestransgenic mice
collection DOAJ
language English
format Article
sources DOAJ
author Bettina M. Foidl
Christian Humpel
spellingShingle Bettina M. Foidl
Christian Humpel
Differential Hyperphosphorylation of Tau-S199, -T231 and -S396 in Organotypic Brain Slices of Alzheimer Mice. A Model to Study Early Tau Hyperphosphorylation Using Okadaic Acid
Frontiers in Aging Neuroscience
okadaic acid
Alzheimer’s disease
tau phosphorylation
wortmannin
organotypic brain slices
transgenic mice
author_facet Bettina M. Foidl
Christian Humpel
author_sort Bettina M. Foidl
title Differential Hyperphosphorylation of Tau-S199, -T231 and -S396 in Organotypic Brain Slices of Alzheimer Mice. A Model to Study Early Tau Hyperphosphorylation Using Okadaic Acid
title_short Differential Hyperphosphorylation of Tau-S199, -T231 and -S396 in Organotypic Brain Slices of Alzheimer Mice. A Model to Study Early Tau Hyperphosphorylation Using Okadaic Acid
title_full Differential Hyperphosphorylation of Tau-S199, -T231 and -S396 in Organotypic Brain Slices of Alzheimer Mice. A Model to Study Early Tau Hyperphosphorylation Using Okadaic Acid
title_fullStr Differential Hyperphosphorylation of Tau-S199, -T231 and -S396 in Organotypic Brain Slices of Alzheimer Mice. A Model to Study Early Tau Hyperphosphorylation Using Okadaic Acid
title_full_unstemmed Differential Hyperphosphorylation of Tau-S199, -T231 and -S396 in Organotypic Brain Slices of Alzheimer Mice. A Model to Study Early Tau Hyperphosphorylation Using Okadaic Acid
title_sort differential hyperphosphorylation of tau-s199, -t231 and -s396 in organotypic brain slices of alzheimer mice. a model to study early tau hyperphosphorylation using okadaic acid
publisher Frontiers Media S.A.
series Frontiers in Aging Neuroscience
issn 1663-4365
publishDate 2018-04-01
description Alzheimer’s disease (AD) is a progressive neurodegenerative disorder of the brain, characterized by extracellular aggregation of beta-amyloid (Aβ) and hyperphosphorylation of tau causing intraneuronal neurofibrillary tangles (NFTs). There is urgent need to study the interactions between Aβ and tau, especially to solve the question of the pathological cascade. In the present study, we aim to develop a model of organotypic brain slices in which both plaque and tau pathology can be examined. Organotypic brain slices (150 μm thick, coronal, at the hippocampal level) from adult (9 month) wildtype (WT, C57BL/6N) and transgenic AD mice (TG, APP_SweDI) were cultured for 2 weeks. To induce tau hyperphosphorylation 100 nM okadaic acid (OA), 10 μM wortmannin (WM) or both were added to the slices. Hyperphosphorylation of tau was tested at tau-S199, tau-T231 and tau-S396 using Western blot. Our data show that in TG mice with plaques a 50 kDa fragment of tau-S396 was hyperphosphorylated and that OA induced hyperphosphorylation of tau-S199. In WT mice (without plaques) OA caused hyperphosphorylation of a 50 kDa and a 38 kDa tau-T231 form and a 25 kDa sdftau-S396 fragment. The N-methyl-D-aspartate (NMDA) antagonist MK801 (1 μM) did not block these effects. Immunohistochemistry showed diffuse increased tau-S396 and tau-T231-like immunoreactivities at the hippocampal level but no formation of NFTs. Confocal microscopy indicated, that pTau-T231 was preferentially located in cytoplasma surrounding nuclei whereas pTau-S396 was found mainly in nerve fibers and strongly associated with plaques. In conclusion we provide a novel in vitro model to study both plaque and tau hyperphosphorylation but not NFTs, which could be useful to study pathological processes in AD and to screen for drugs.
topic okadaic acid
Alzheimer’s disease
tau phosphorylation
wortmannin
organotypic brain slices
transgenic mice
url http://journal.frontiersin.org/article/10.3389/fnagi.2018.00113/full
work_keys_str_mv AT bettinamfoidl differentialhyperphosphorylationoftaus199t231ands396inorganotypicbrainslicesofalzheimermiceamodeltostudyearlytauhyperphosphorylationusingokadaicacid
AT christianhumpel differentialhyperphosphorylationoftaus199t231ands396inorganotypicbrainslicesofalzheimermiceamodeltostudyearlytauhyperphosphorylationusingokadaicacid
_version_ 1716779379116212224