Stability Assessment of Deep Three-Soft Outburst Coal Seam Roof Based on Fuzzy Analytic Hierarchy Process

The stability of deep “three-soft” coal seam roof has always been a key issue in coal mining. There are a lot of factors affecting the stability of deep three-soft coal seam outburst roof. However, there is currently no definite method able to draw an accurate assessment conclusion on roof stability...

Full description

Bibliographic Details
Main Authors: Qingling Meng, Yanling Wu, Minbo Zhang, Zichao Wang, Kejiang Lei
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Shock and Vibration
Online Access:http://dx.doi.org/10.1155/2021/4328550
Description
Summary:The stability of deep “three-soft” coal seam roof has always been a key issue in coal mining. There are a lot of factors affecting the stability of deep three-soft coal seam outburst roof. However, there is currently no definite method able to draw an accurate assessment conclusion on roof stability. In order to accurately determine the main influencing factors of the stability of deep three-soft coal seam outburst roof and reduce the loss of coal production, this paper performed three-soft coal seam risk identification on Lugou Mine based on the introduction of the fuzzy analytic hierarchy process theory. 23 main risk factors were identified. Then, it established a hierarchical structure model of coal seam roof stability in accordance with experts’ opinions. The analytic hierarchy process was used to calculate the weights of indicators at all levels. Next, the paper used the fuzzy comprehensive evaluation method and expert scoring to evaluate various risk factors in the indicator system, as well as the overall safety level. The results showed that the deep three-soft coal seam stability of Lugou Mine ranks the third hazard level. The main risk and harmful factors include safety awareness, safety monitoring system, roof weakness, ventilation system, fire-fighting system, and rock bolt quality. In response to the evaluation results, this paper formulated corresponding control measure in terms of ventilation risk, safety monitoring risks, construction personnel risks, and fire protection risk to reduce losses in the mining process, providing a new evaluation method for the stability assessment of deep outburst coal seam roof.
ISSN:1875-9203