Power Plant Economic Analysis: Maximizing Lifecycle Profitability by Simulating Preliminary Design Solutions of Steam-Cycle Conditions

Many existing financial models for power plants chose a design based on the maximum thermal efficiency excluding the operational (OPEX) and capital (CAPEX) cost variations of technical factors. These factors are often fixed because including them in financial assessments can be burdensome and it is...

Full description

Bibliographic Details
Main Authors: Chul-Seung Hong, Eul-Bum Lee
Format: Article
Language:English
Published: MDPI AG 2018-08-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/11/9/2245
id doaj-80a32c81c1ea4b558aaf8246adc76b55
record_format Article
spelling doaj-80a32c81c1ea4b558aaf8246adc76b552020-11-25T00:20:32ZengMDPI AGEnergies1996-10732018-08-01119224510.3390/en11092245en11092245Power Plant Economic Analysis: Maximizing Lifecycle Profitability by Simulating Preliminary Design Solutions of Steam-Cycle ConditionsChul-Seung Hong0Eul-Bum Lee1Graduate Institute of Ferrous Technology & Graduate School of Engineering Mastership, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Ku, Pohang 37673, KoreaGraduate Institute of Ferrous Technology & Graduate School of Engineering Mastership, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Ku, Pohang 37673, KoreaMany existing financial models for power plants chose a design based on the maximum thermal efficiency excluding the operational (OPEX) and capital (CAPEX) cost variations of technical factors. These factors are often fixed because including them in financial assessments can be burdensome and it is assumed that maximum efficiency equals maximum profit. However, this assumption may not always be right. Through 19,440 power plant steam-cycle design solutions and their associated OPEX and CAPEX, this study found the eighth most thermally-efficient solution to be $1.284 M more profitable than the traditional thermally-optimized design solution. As such, this paper presents a model incorporating technical factors through parametric estimation by minimizing the burden on decision makers. While this may reduce precision, it allows for quick cost assessments across differing design solutions. The data for model development was collected from a Korean-constructed, operational 600 MW coal-fired power plant in the Philippines. Using the Thermoflex software, nearly all design configurations’ heat rate outputs are simulated. Profitability is then optimized based on the resultant design configuration’s impact on revenue and CAPEX and OPEX costs. The simulation inputs included variables found to be most impactful on the steam generated power efficiency per existing literature. Lastly, the model includes an assessment of cost impacts among recent environmental regulations by incorporating carbon tax costs and a sensitivity analysis. The economic analysis model discussed in this paper is non-existent in current literature and will aid the power-plant project investment industry through their project feasibility analyses.http://www.mdpi.com/1996-1073/11/9/2245thermal power plantcapital budgetingeconomic analysisproject investmentcase studyinvestment costcost estimate
collection DOAJ
language English
format Article
sources DOAJ
author Chul-Seung Hong
Eul-Bum Lee
spellingShingle Chul-Seung Hong
Eul-Bum Lee
Power Plant Economic Analysis: Maximizing Lifecycle Profitability by Simulating Preliminary Design Solutions of Steam-Cycle Conditions
Energies
thermal power plant
capital budgeting
economic analysis
project investment
case study
investment cost
cost estimate
author_facet Chul-Seung Hong
Eul-Bum Lee
author_sort Chul-Seung Hong
title Power Plant Economic Analysis: Maximizing Lifecycle Profitability by Simulating Preliminary Design Solutions of Steam-Cycle Conditions
title_short Power Plant Economic Analysis: Maximizing Lifecycle Profitability by Simulating Preliminary Design Solutions of Steam-Cycle Conditions
title_full Power Plant Economic Analysis: Maximizing Lifecycle Profitability by Simulating Preliminary Design Solutions of Steam-Cycle Conditions
title_fullStr Power Plant Economic Analysis: Maximizing Lifecycle Profitability by Simulating Preliminary Design Solutions of Steam-Cycle Conditions
title_full_unstemmed Power Plant Economic Analysis: Maximizing Lifecycle Profitability by Simulating Preliminary Design Solutions of Steam-Cycle Conditions
title_sort power plant economic analysis: maximizing lifecycle profitability by simulating preliminary design solutions of steam-cycle conditions
publisher MDPI AG
series Energies
issn 1996-1073
publishDate 2018-08-01
description Many existing financial models for power plants chose a design based on the maximum thermal efficiency excluding the operational (OPEX) and capital (CAPEX) cost variations of technical factors. These factors are often fixed because including them in financial assessments can be burdensome and it is assumed that maximum efficiency equals maximum profit. However, this assumption may not always be right. Through 19,440 power plant steam-cycle design solutions and their associated OPEX and CAPEX, this study found the eighth most thermally-efficient solution to be $1.284 M more profitable than the traditional thermally-optimized design solution. As such, this paper presents a model incorporating technical factors through parametric estimation by minimizing the burden on decision makers. While this may reduce precision, it allows for quick cost assessments across differing design solutions. The data for model development was collected from a Korean-constructed, operational 600 MW coal-fired power plant in the Philippines. Using the Thermoflex software, nearly all design configurations’ heat rate outputs are simulated. Profitability is then optimized based on the resultant design configuration’s impact on revenue and CAPEX and OPEX costs. The simulation inputs included variables found to be most impactful on the steam generated power efficiency per existing literature. Lastly, the model includes an assessment of cost impacts among recent environmental regulations by incorporating carbon tax costs and a sensitivity analysis. The economic analysis model discussed in this paper is non-existent in current literature and will aid the power-plant project investment industry through their project feasibility analyses.
topic thermal power plant
capital budgeting
economic analysis
project investment
case study
investment cost
cost estimate
url http://www.mdpi.com/1996-1073/11/9/2245
work_keys_str_mv AT chulseunghong powerplanteconomicanalysismaximizinglifecycleprofitabilitybysimulatingpreliminarydesignsolutionsofsteamcycleconditions
AT eulbumlee powerplanteconomicanalysismaximizinglifecycleprofitabilitybysimulatingpreliminarydesignsolutionsofsteamcycleconditions
_version_ 1725366820323459072