Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles

Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global...

Full description

Bibliographic Details
Main Authors: C. Le Quéré, E. T. Buitenhuis, R. Moriarty, S. Alvain, O. Aumont, L. Bopp, S. Chollet, C. Enright, D. J. Franklin, R. J. Geider, S. P. Harrison, A. G. Hirst, S. Larsen, L. Legendre, T. Platt, I. C. Prentice, R. B. Rivkin, S. Sailley, S. Sathyendranath, N. Stephens, M. Vogt, S. M. Vallina
Format: Article
Language:English
Published: Copernicus Publications 2016-07-01
Series:Biogeosciences
Online Access:http://www.biogeosciences.net/13/4111/2016/bg-13-4111-2016.pdf
id doaj-80c9cda1244741efaab2ec5bf0d73d7d
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author C. Le Quéré
E. T. Buitenhuis
R. Moriarty
S. Alvain
O. Aumont
L. Bopp
S. Chollet
C. Enright
D. J. Franklin
R. J. Geider
S. P. Harrison
A. G. Hirst
S. Larsen
L. Legendre
T. Platt
I. C. Prentice
R. B. Rivkin
S. Sailley
S. Sathyendranath
N. Stephens
M. Vogt
S. M. Vallina
spellingShingle C. Le Quéré
E. T. Buitenhuis
R. Moriarty
S. Alvain
O. Aumont
L. Bopp
S. Chollet
C. Enright
D. J. Franklin
R. J. Geider
S. P. Harrison
A. G. Hirst
S. Larsen
L. Legendre
T. Platt
I. C. Prentice
R. B. Rivkin
S. Sailley
S. Sathyendranath
N. Stephens
M. Vogt
S. M. Vallina
Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles
Biogeosciences
author_facet C. Le Quéré
E. T. Buitenhuis
R. Moriarty
S. Alvain
O. Aumont
L. Bopp
S. Chollet
C. Enright
D. J. Franklin
R. J. Geider
S. P. Harrison
A. G. Hirst
S. Larsen
L. Legendre
T. Platt
I. C. Prentice
R. B. Rivkin
S. Sailley
S. Sathyendranath
N. Stephens
M. Vogt
S. M. Vallina
author_sort C. Le Quéré
title Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles
title_short Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles
title_full Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles
title_fullStr Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles
title_full_unstemmed Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles
title_sort role of zooplankton dynamics for southern ocean phytoplankton biomass and global biogeochemical cycles
publisher Copernicus Publications
series Biogeosciences
issn 1726-4170
1726-4189
publishDate 2016-07-01
description Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs): six types of phytoplankton, three types of zooplankton, and heterotrophic procaryotes. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing macrozooplankton (e.g. krill), and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean high-nutrient low-chlorophyll (HNLC) region during summer. When model simulations do not include macrozooplankton grazing explicitly, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there is no iron deposition from dust. When model simulations include a slow-growing macrozooplankton and trophic cascades among three zooplankton types, the high-chlorophyll summer bias in the Southern Ocean HNLC region largely disappears. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community, despite iron limitation of phytoplankton community growth rates. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.
url http://www.biogeosciences.net/13/4111/2016/bg-13-4111-2016.pdf
work_keys_str_mv AT clequere roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT etbuitenhuis roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT rmoriarty roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT salvain roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT oaumont roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT lbopp roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT schollet roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT cenright roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT djfranklin roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT rjgeider roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT spharrison roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT aghirst roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT slarsen roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT llegendre roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT tplatt roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT icprentice roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT rbrivkin roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT ssailley roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT ssathyendranath roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT nstephens roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT mvogt roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
AT smvallina roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles
_version_ 1724807608873779200
spelling doaj-80c9cda1244741efaab2ec5bf0d73d7d2020-11-25T02:34:39ZengCopernicus PublicationsBiogeosciences1726-41701726-41892016-07-0113144111413310.5194/bg-13-4111-2016Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cyclesC. Le Quéré0E. T. Buitenhuis1R. Moriarty2S. Alvain3O. Aumont4L. Bopp5S. Chollet6C. Enright7D. J. Franklin8R. J. Geider9S. P. Harrison10A. G. Hirst11S. Larsen12L. Legendre13T. Platt14I. C. Prentice15R. B. Rivkin16S. Sailley17S. Sathyendranath18N. Stephens19M. Vogt20S. M. Vallina21Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UKTyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UKTyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UKLaboratoire d'Océanologie et de Géosciences – UMR LOG 8187, Université Lille Nord de France, BP 8062930 Wimereux, FranceLaboratoire d'Océanographie et de Climatologie: Expérimentation et Approches Numériques, IRD/IPSL, Plouzané, FranceLab. des Sciences du Climat et de l'Environnement, Orme des Merisiers, Bat. 709, 91191 Gif-sur-Yvette, FranceSchool of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UKTyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UKFaculty of Science & Technology, Bournemouth University, Talbot Campus, Poole, BH12 5BB, UKSchool of Biological Sciences, University of Essex, Colchester CO4 3SQ, UKDepartment of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia and School of Archaeology, Geography and Environmental Sciences (SAGES), University of Reading, Whiteknights, Reading, RG6 6AB, UKSchool of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UKNorwegian Institute of Marine Research, Nye Flødevigveien 20, His, 4817, NorwaySorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), Observatoire océanologique, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, FrancePlymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UKAXA Chair of Biosphere and Climate Impacts, Grand Challenges in Ecosystems and the Environment and Grantham Institute – Climate Change and the Environment, Department of Life Sciences, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UKDepartment of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7 CanadaPlymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UKPlymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UKPlymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UKInstitute for Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätsstraße 16, 8092 Zürich, SwitzerlandInstitute of marine Sciences (CSIC), Department Marine Biology and Oceanography, 08003 Barcelona, SpainGlobal ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs): six types of phytoplankton, three types of zooplankton, and heterotrophic procaryotes. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing macrozooplankton (e.g. krill), and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean high-nutrient low-chlorophyll (HNLC) region during summer. When model simulations do not include macrozooplankton grazing explicitly, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there is no iron deposition from dust. When model simulations include a slow-growing macrozooplankton and trophic cascades among three zooplankton types, the high-chlorophyll summer bias in the Southern Ocean HNLC region largely disappears. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community, despite iron limitation of phytoplankton community growth rates. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.http://www.biogeosciences.net/13/4111/2016/bg-13-4111-2016.pdf