Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles
Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2016-07-01
|
Series: | Biogeosciences |
Online Access: | http://www.biogeosciences.net/13/4111/2016/bg-13-4111-2016.pdf |
id |
doaj-80c9cda1244741efaab2ec5bf0d73d7d |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
C. Le Quéré E. T. Buitenhuis R. Moriarty S. Alvain O. Aumont L. Bopp S. Chollet C. Enright D. J. Franklin R. J. Geider S. P. Harrison A. G. Hirst S. Larsen L. Legendre T. Platt I. C. Prentice R. B. Rivkin S. Sailley S. Sathyendranath N. Stephens M. Vogt S. M. Vallina |
spellingShingle |
C. Le Quéré E. T. Buitenhuis R. Moriarty S. Alvain O. Aumont L. Bopp S. Chollet C. Enright D. J. Franklin R. J. Geider S. P. Harrison A. G. Hirst S. Larsen L. Legendre T. Platt I. C. Prentice R. B. Rivkin S. Sailley S. Sathyendranath N. Stephens M. Vogt S. M. Vallina Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cycles Biogeosciences |
author_facet |
C. Le Quéré E. T. Buitenhuis R. Moriarty S. Alvain O. Aumont L. Bopp S. Chollet C. Enright D. J. Franklin R. J. Geider S. P. Harrison A. G. Hirst S. Larsen L. Legendre T. Platt I. C. Prentice R. B. Rivkin S. Sailley S. Sathyendranath N. Stephens M. Vogt S. M. Vallina |
author_sort |
C. Le Quéré |
title |
Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and
global biogeochemical cycles |
title_short |
Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and
global biogeochemical cycles |
title_full |
Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and
global biogeochemical cycles |
title_fullStr |
Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and
global biogeochemical cycles |
title_full_unstemmed |
Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and
global biogeochemical cycles |
title_sort |
role of zooplankton dynamics for southern ocean phytoplankton biomass and
global biogeochemical cycles |
publisher |
Copernicus Publications |
series |
Biogeosciences |
issn |
1726-4170 1726-4189 |
publishDate |
2016-07-01 |
description |
Global ocean biogeochemistry models currently employed in climate change
projections use highly simplified representations of pelagic food webs. These
food webs do not necessarily include critical pathways by which ecosystems
interact with ocean biogeochemistry and climate. Here we present a global
biogeochemical model which incorporates ecosystem dynamics based on the
representation of ten plankton functional types (PFTs): six types of
phytoplankton, three types of zooplankton, and heterotrophic procaryotes. We
improved the representation of zooplankton dynamics in our model through
(a) the explicit inclusion of large, slow-growing macrozooplankton (e.g.
krill), and (b) the introduction of trophic cascades among the three
zooplankton types. We use the model to quantitatively assess the relative
roles of iron vs. grazing in determining phytoplankton biomass in the
Southern Ocean high-nutrient low-chlorophyll (HNLC) region during summer.
When model simulations do not include macrozooplankton grazing explicitly,
they systematically overestimate Southern Ocean chlorophyll biomass during
the summer, even when there is no iron deposition from dust. When model
simulations include a slow-growing macrozooplankton and trophic cascades
among three zooplankton types, the high-chlorophyll summer bias in the
Southern Ocean HNLC region largely disappears. Our model results suggest that
the observed low phytoplankton biomass in the Southern Ocean during summer is
primarily explained by the dynamics of the Southern Ocean zooplankton
community, despite iron limitation of phytoplankton community growth rates.
This result has implications for the representation of global biogeochemical
cycles in models as zooplankton faecal pellets sink rapidly and partly
control the carbon export to the intermediate and deep ocean. |
url |
http://www.biogeosciences.net/13/4111/2016/bg-13-4111-2016.pdf |
work_keys_str_mv |
AT clequere roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT etbuitenhuis roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT rmoriarty roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT salvain roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT oaumont roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT lbopp roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT schollet roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT cenright roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT djfranklin roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT rjgeider roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT spharrison roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT aghirst roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT slarsen roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT llegendre roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT tplatt roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT icprentice roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT rbrivkin roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT ssailley roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT ssathyendranath roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT nstephens roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT mvogt roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles AT smvallina roleofzooplanktondynamicsforsouthernoceanphytoplanktonbiomassandglobalbiogeochemicalcycles |
_version_ |
1724807608873779200 |
spelling |
doaj-80c9cda1244741efaab2ec5bf0d73d7d2020-11-25T02:34:39ZengCopernicus PublicationsBiogeosciences1726-41701726-41892016-07-0113144111413310.5194/bg-13-4111-2016Role of zooplankton dynamics for Southern Ocean phytoplankton biomass and global biogeochemical cyclesC. Le Quéré0E. T. Buitenhuis1R. Moriarty2S. Alvain3O. Aumont4L. Bopp5S. Chollet6C. Enright7D. J. Franklin8R. J. Geider9S. P. Harrison10A. G. Hirst11S. Larsen12L. Legendre13T. Platt14I. C. Prentice15R. B. Rivkin16S. Sailley17S. Sathyendranath18N. Stephens19M. Vogt20S. M. Vallina21Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UKTyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UKTyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UKLaboratoire d'Océanologie et de Géosciences – UMR LOG 8187, Université Lille Nord de France, BP 8062930 Wimereux, FranceLaboratoire d'Océanographie et de Climatologie: Expérimentation et Approches Numériques, IRD/IPSL, Plouzané, FranceLab. des Sciences du Climat et de l'Environnement, Orme des Merisiers, Bat. 709, 91191 Gif-sur-Yvette, FranceSchool of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UKTyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UKFaculty of Science & Technology, Bournemouth University, Talbot Campus, Poole, BH12 5BB, UKSchool of Biological Sciences, University of Essex, Colchester CO4 3SQ, UKDepartment of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia and School of Archaeology, Geography and Environmental Sciences (SAGES), University of Reading, Whiteknights, Reading, RG6 6AB, UKSchool of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UKNorwegian Institute of Marine Research, Nye Flødevigveien 20, His, 4817, NorwaySorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie de Villefranche (LOV), Observatoire océanologique, 181 Chemin du Lazaret, 06230, Villefranche-sur-Mer, FrancePlymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UKAXA Chair of Biosphere and Climate Impacts, Grand Challenges in Ecosystems and the Environment and Grantham Institute – Climate Change and the Environment, Department of Life Sciences, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UKDepartment of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL A1C 5S7 CanadaPlymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UKPlymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UKPlymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UKInstitute for Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätsstraße 16, 8092 Zürich, SwitzerlandInstitute of marine Sciences (CSIC), Department Marine Biology and Oceanography, 08003 Barcelona, SpainGlobal ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs): six types of phytoplankton, three types of zooplankton, and heterotrophic procaryotes. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing macrozooplankton (e.g. krill), and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean high-nutrient low-chlorophyll (HNLC) region during summer. When model simulations do not include macrozooplankton grazing explicitly, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there is no iron deposition from dust. When model simulations include a slow-growing macrozooplankton and trophic cascades among three zooplankton types, the high-chlorophyll summer bias in the Southern Ocean HNLC region largely disappears. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community, despite iron limitation of phytoplankton community growth rates. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.http://www.biogeosciences.net/13/4111/2016/bg-13-4111-2016.pdf |