Quantitative Genetic Analyses of Male Color Pattern and Female Mate Choice in a Pair of Cichlid Fishes of Lake Malawi, East Africa.

The traits involved in sexual selection, such as male secondary sexual characteristics and female mate choice, often co-evolve which can promote population differentiation. However, the genetic architecture of these phenotypes can influence their evolvability and thereby affect the divergence of spe...

Full description

Bibliographic Details
Main Authors: Baoqing Ding, Daniel W Daugherty, Martin Husemann, Ming Chen, Aimee E Howe, Patrick D Danley
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0114798
id doaj-815bd7bdc7ff48f3a74c8feb4b907155
record_format Article
spelling doaj-815bd7bdc7ff48f3a74c8feb4b9071552021-03-03T20:11:01ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-01912e11479810.1371/journal.pone.0114798Quantitative Genetic Analyses of Male Color Pattern and Female Mate Choice in a Pair of Cichlid Fishes of Lake Malawi, East Africa.Baoqing DingDaniel W DaughertyMartin HusemannMing ChenAimee E HowePatrick D DanleyThe traits involved in sexual selection, such as male secondary sexual characteristics and female mate choice, often co-evolve which can promote population differentiation. However, the genetic architecture of these phenotypes can influence their evolvability and thereby affect the divergence of species. The extraordinary diversity of East African cichlid fishes is often attributed to strong sexual selection and thus this system provides an excellent model to test predictions regarding the genetic architecture of sexually selected traits that contribute to reproductive isolation. In particular, theory predicts that rapid speciation is facilitated when male sexual traits and female mating preferences are controlled by a limited number of linked genes. However, few studies have examined the genetic basis of male secondary sexual traits and female mating preferences in cichlids and none have investigated the genetic architecture of both jointly. In this study, we artificially hybridized a pair of behaviorally isolated cichlid fishes from Lake Malawi and quantified both melanistic color pattern and female mate choice. We investigated the genetic architecture of both phenotypes using quantitative genetic analyses. Our results suggest that 1) many non-additively acting genetic factors influence melanistic color patterns, 2) female mate choice may be controlled by a minimum of 1-2 non-additive genetic factors, and 3) F2 female mate choice is not influenced by male courting effort. Furthermore, a joint analysis of color pattern and female mate choice indicates that the genes underlying these two traits are unlikely to be physically linked. These results suggest that reproductive isolation may evolve rapidly owing to the few genetic factors underlying female mate choice. Hence, female mate choice likely played an important role in the unparalleled speciation of East African cichlid fish.https://doi.org/10.1371/journal.pone.0114798
collection DOAJ
language English
format Article
sources DOAJ
author Baoqing Ding
Daniel W Daugherty
Martin Husemann
Ming Chen
Aimee E Howe
Patrick D Danley
spellingShingle Baoqing Ding
Daniel W Daugherty
Martin Husemann
Ming Chen
Aimee E Howe
Patrick D Danley
Quantitative Genetic Analyses of Male Color Pattern and Female Mate Choice in a Pair of Cichlid Fishes of Lake Malawi, East Africa.
PLoS ONE
author_facet Baoqing Ding
Daniel W Daugherty
Martin Husemann
Ming Chen
Aimee E Howe
Patrick D Danley
author_sort Baoqing Ding
title Quantitative Genetic Analyses of Male Color Pattern and Female Mate Choice in a Pair of Cichlid Fishes of Lake Malawi, East Africa.
title_short Quantitative Genetic Analyses of Male Color Pattern and Female Mate Choice in a Pair of Cichlid Fishes of Lake Malawi, East Africa.
title_full Quantitative Genetic Analyses of Male Color Pattern and Female Mate Choice in a Pair of Cichlid Fishes of Lake Malawi, East Africa.
title_fullStr Quantitative Genetic Analyses of Male Color Pattern and Female Mate Choice in a Pair of Cichlid Fishes of Lake Malawi, East Africa.
title_full_unstemmed Quantitative Genetic Analyses of Male Color Pattern and Female Mate Choice in a Pair of Cichlid Fishes of Lake Malawi, East Africa.
title_sort quantitative genetic analyses of male color pattern and female mate choice in a pair of cichlid fishes of lake malawi, east africa.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2014-01-01
description The traits involved in sexual selection, such as male secondary sexual characteristics and female mate choice, often co-evolve which can promote population differentiation. However, the genetic architecture of these phenotypes can influence their evolvability and thereby affect the divergence of species. The extraordinary diversity of East African cichlid fishes is often attributed to strong sexual selection and thus this system provides an excellent model to test predictions regarding the genetic architecture of sexually selected traits that contribute to reproductive isolation. In particular, theory predicts that rapid speciation is facilitated when male sexual traits and female mating preferences are controlled by a limited number of linked genes. However, few studies have examined the genetic basis of male secondary sexual traits and female mating preferences in cichlids and none have investigated the genetic architecture of both jointly. In this study, we artificially hybridized a pair of behaviorally isolated cichlid fishes from Lake Malawi and quantified both melanistic color pattern and female mate choice. We investigated the genetic architecture of both phenotypes using quantitative genetic analyses. Our results suggest that 1) many non-additively acting genetic factors influence melanistic color patterns, 2) female mate choice may be controlled by a minimum of 1-2 non-additive genetic factors, and 3) F2 female mate choice is not influenced by male courting effort. Furthermore, a joint analysis of color pattern and female mate choice indicates that the genes underlying these two traits are unlikely to be physically linked. These results suggest that reproductive isolation may evolve rapidly owing to the few genetic factors underlying female mate choice. Hence, female mate choice likely played an important role in the unparalleled speciation of East African cichlid fish.
url https://doi.org/10.1371/journal.pone.0114798
work_keys_str_mv AT baoqingding quantitativegeneticanalysesofmalecolorpatternandfemalematechoiceinapairofcichlidfishesoflakemalawieastafrica
AT danielwdaugherty quantitativegeneticanalysesofmalecolorpatternandfemalematechoiceinapairofcichlidfishesoflakemalawieastafrica
AT martinhusemann quantitativegeneticanalysesofmalecolorpatternandfemalematechoiceinapairofcichlidfishesoflakemalawieastafrica
AT mingchen quantitativegeneticanalysesofmalecolorpatternandfemalematechoiceinapairofcichlidfishesoflakemalawieastafrica
AT aimeeehowe quantitativegeneticanalysesofmalecolorpatternandfemalematechoiceinapairofcichlidfishesoflakemalawieastafrica
AT patrickddanley quantitativegeneticanalysesofmalecolorpatternandfemalematechoiceinapairofcichlidfishesoflakemalawieastafrica
_version_ 1714823614371463168