Mechanical Properties of Al 25 wt.% Cu Functionally Graded Material

The present work refers to describe the effects of Al2Cu variations on various properties of thick-walled functionally graded (FG) cylindrical shell. Al-25 wt.% Cu hypo-eutectic alloy ingot is melted and centrifugally casted to obtain high entropy FG composite. A series of microstructure examination...

Full description

Bibliographic Details
Main Authors: Mehditabar Aref, Rahimi Gholam H., Vahdat Seyed Ebrahim
Format: Article
Language:English
Published: De Gruyter 2019-01-01
Series:Science and Engineering of Composite Materials
Subjects:
Online Access:https://doi.org/10.1515/secm-2019-0014
Description
Summary:The present work refers to describe the effects of Al2Cu variations on various properties of thick-walled functionally graded (FG) cylindrical shell. Al-25 wt.% Cu hypo-eutectic alloy ingot is melted and centrifugally casted to obtain high entropy FG composite. A series of microstructure examinations such as FESEM and EDX analysis were carried out to determine the distributions of constituent phases and elements. It is revealed that the maximum volume fraction of Al2Cu particle is reached near the inner surface with 35.7 Vol.% and then reduces gradually to 32.5 Vol.% at the outer surface of FG cylindrical shell. The effects of the variations Al2Cu along radial direction of FG tube are discussed through Vickers hardness, wear rate, coefficient of thermal expansion and compressive test measurements. The experimental results show that the wear and hardness are varied in graded manner which the highest wear resistance with wear rate of 9.1×10−5g/mm2 and hardness with 153HV are found towards Al2Cu enriched zone or inner periphery. Moreover, the studied FG cylindrical shell shows drop 2.5% in yield stress and 4.5% in elastic modulus from intermediate to inner layers due to Al2Cu particles clustering in metal matrix.
ISSN:0792-1233
2191-0359