A New Construction of Optimal Optical Orthogonal Codes From Sidon Sets
Two new constructions for families of optical orthogonal codes are presented. The first is a generalization of the well-known construction of Sidon sets given by I. Z. Ruzsa. The second construction is optimal with respect to the Johnson bound, and its parameters (n, w, λ) are respectivel...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9098920/ |
id |
doaj-81b35481ffc94810bf76dc3e3e16ed15 |
---|---|
record_format |
Article |
spelling |
doaj-81b35481ffc94810bf76dc3e3e16ed152021-03-30T01:37:15ZengIEEEIEEE Access2169-35362020-01-01810074910075310.1109/ACCESS.2020.29968139098920A New Construction of Optimal Optical Orthogonal Codes From Sidon SetsHamilton M. Ruiz0https://orcid.org/0000-0002-7543-2698Luis M. Delgado1https://orcid.org/0000-0003-4737-4299Carlos A. Trujillo2https://orcid.org/0000-0001-9877-0721Departamento de Matemáticas, Universidad del Cauca, Popayán, ColombiaDepartamento de Matemáticas, Universidad del Cauca, Popayán, ColombiaDepartamento de Matemáticas, Universidad del Cauca, Popayán, ColombiaTwo new constructions for families of optical orthogonal codes are presented. The first is a generalization of the well-known construction of Sidon sets given by I. Z. Ruzsa. The second construction is optimal with respect to the Johnson bound, and its parameters (n, w, λ) are respectively (p<sup>h+1</sup> - p, p, 1), where p is any prime, h is an integer greater than 1 and the family size is p<sup>h-1</sup> + p<sup>h-2</sup> + ⋯ + p<sup>2</sup> + p.https://ieeexplore.ieee.org/document/9098920/Optical code-division multiple access (OCDMA)optical orthogonal code (OOC)optical CDMASidon set |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hamilton M. Ruiz Luis M. Delgado Carlos A. Trujillo |
spellingShingle |
Hamilton M. Ruiz Luis M. Delgado Carlos A. Trujillo A New Construction of Optimal Optical Orthogonal Codes From Sidon Sets IEEE Access Optical code-division multiple access (OCDMA) optical orthogonal code (OOC) optical CDMA Sidon set |
author_facet |
Hamilton M. Ruiz Luis M. Delgado Carlos A. Trujillo |
author_sort |
Hamilton M. Ruiz |
title |
A New Construction of Optimal Optical Orthogonal Codes From Sidon Sets |
title_short |
A New Construction of Optimal Optical Orthogonal Codes From Sidon Sets |
title_full |
A New Construction of Optimal Optical Orthogonal Codes From Sidon Sets |
title_fullStr |
A New Construction of Optimal Optical Orthogonal Codes From Sidon Sets |
title_full_unstemmed |
A New Construction of Optimal Optical Orthogonal Codes From Sidon Sets |
title_sort |
new construction of optimal optical orthogonal codes from sidon sets |
publisher |
IEEE |
series |
IEEE Access |
issn |
2169-3536 |
publishDate |
2020-01-01 |
description |
Two new constructions for families of optical orthogonal codes are presented. The first is a generalization of the well-known construction of Sidon sets given by I. Z. Ruzsa. The second construction is optimal with respect to the Johnson bound, and its parameters (n, w, λ) are respectively (p<sup>h+1</sup> - p, p, 1), where p is any prime, h is an integer greater than 1 and the family size is p<sup>h-1</sup> + p<sup>h-2</sup> + ⋯ + p<sup>2</sup> + p. |
topic |
Optical code-division multiple access (OCDMA) optical orthogonal code (OOC) optical CDMA Sidon set |
url |
https://ieeexplore.ieee.org/document/9098920/ |
work_keys_str_mv |
AT hamiltonmruiz anewconstructionofoptimalopticalorthogonalcodesfromsidonsets AT luismdelgado anewconstructionofoptimalopticalorthogonalcodesfromsidonsets AT carlosatrujillo anewconstructionofoptimalopticalorthogonalcodesfromsidonsets AT hamiltonmruiz newconstructionofoptimalopticalorthogonalcodesfromsidonsets AT luismdelgado newconstructionofoptimalopticalorthogonalcodesfromsidonsets AT carlosatrujillo newconstructionofoptimalopticalorthogonalcodesfromsidonsets |
_version_ |
1724186680375640064 |