A New Construction of Optimal Optical Orthogonal Codes From Sidon Sets

Two new constructions for families of optical orthogonal codes are presented. The first is a generalization of the well-known construction of Sidon sets given by I. Z. Ruzsa. The second construction is optimal with respect to the Johnson bound, and its parameters (n, w, λ) are respectivel...

Full description

Bibliographic Details
Main Authors: Hamilton M. Ruiz, Luis M. Delgado, Carlos A. Trujillo
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9098920/
id doaj-81b35481ffc94810bf76dc3e3e16ed15
record_format Article
spelling doaj-81b35481ffc94810bf76dc3e3e16ed152021-03-30T01:37:15ZengIEEEIEEE Access2169-35362020-01-01810074910075310.1109/ACCESS.2020.29968139098920A New Construction of Optimal Optical Orthogonal Codes From Sidon SetsHamilton M. Ruiz0https://orcid.org/0000-0002-7543-2698Luis M. Delgado1https://orcid.org/0000-0003-4737-4299Carlos A. Trujillo2https://orcid.org/0000-0001-9877-0721Departamento de Matem&#x00E1;ticas, Universidad del Cauca, Popay&#x00E1;n, ColombiaDepartamento de Matem&#x00E1;ticas, Universidad del Cauca, Popay&#x00E1;n, ColombiaDepartamento de Matem&#x00E1;ticas, Universidad del Cauca, Popay&#x00E1;n, ColombiaTwo new constructions for families of optical orthogonal codes are presented. The first is a generalization of the well-known construction of Sidon sets given by I. Z. Ruzsa. The second construction is optimal with respect to the Johnson bound, and its parameters (n, w, &#x03BB;) are respectively (p<sup>h+1</sup> - p, p, 1), where p is any prime, h is an integer greater than 1 and the family size is p<sup>h-1</sup> + p<sup>h-2</sup> + &#x22EF; + p<sup>2</sup> + p.https://ieeexplore.ieee.org/document/9098920/Optical code-division multiple access (OCDMA)optical orthogonal code (OOC)optical CDMASidon set
collection DOAJ
language English
format Article
sources DOAJ
author Hamilton M. Ruiz
Luis M. Delgado
Carlos A. Trujillo
spellingShingle Hamilton M. Ruiz
Luis M. Delgado
Carlos A. Trujillo
A New Construction of Optimal Optical Orthogonal Codes From Sidon Sets
IEEE Access
Optical code-division multiple access (OCDMA)
optical orthogonal code (OOC)
optical CDMA
Sidon set
author_facet Hamilton M. Ruiz
Luis M. Delgado
Carlos A. Trujillo
author_sort Hamilton M. Ruiz
title A New Construction of Optimal Optical Orthogonal Codes From Sidon Sets
title_short A New Construction of Optimal Optical Orthogonal Codes From Sidon Sets
title_full A New Construction of Optimal Optical Orthogonal Codes From Sidon Sets
title_fullStr A New Construction of Optimal Optical Orthogonal Codes From Sidon Sets
title_full_unstemmed A New Construction of Optimal Optical Orthogonal Codes From Sidon Sets
title_sort new construction of optimal optical orthogonal codes from sidon sets
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2020-01-01
description Two new constructions for families of optical orthogonal codes are presented. The first is a generalization of the well-known construction of Sidon sets given by I. Z. Ruzsa. The second construction is optimal with respect to the Johnson bound, and its parameters (n, w, &#x03BB;) are respectively (p<sup>h+1</sup> - p, p, 1), where p is any prime, h is an integer greater than 1 and the family size is p<sup>h-1</sup> + p<sup>h-2</sup> + &#x22EF; + p<sup>2</sup> + p.
topic Optical code-division multiple access (OCDMA)
optical orthogonal code (OOC)
optical CDMA
Sidon set
url https://ieeexplore.ieee.org/document/9098920/
work_keys_str_mv AT hamiltonmruiz anewconstructionofoptimalopticalorthogonalcodesfromsidonsets
AT luismdelgado anewconstructionofoptimalopticalorthogonalcodesfromsidonsets
AT carlosatrujillo anewconstructionofoptimalopticalorthogonalcodesfromsidonsets
AT hamiltonmruiz newconstructionofoptimalopticalorthogonalcodesfromsidonsets
AT luismdelgado newconstructionofoptimalopticalorthogonalcodesfromsidonsets
AT carlosatrujillo newconstructionofoptimalopticalorthogonalcodesfromsidonsets
_version_ 1724186680375640064