On Neumann boundary value problems for some quasilinear elliptic equations

function $a(x)$ on the existence of positive solutions to the problem $$left{ eqalign{ -{ m div},(|abla u|^{p-2}abla u)&= lambda a(x)|u|^{p-2}u+b(x)|u|^{gamma-2}u, quad xinOmega, cr x{partial u overpartial n}&=0, quad xinpartialOmega,,} ight. $$ where $Omega$ is a smooth bounded domain in $...

Full description

Bibliographic Details
Main Authors: Paul A. Binding, Pavel Drabek, Yin Xi Huang
Format: Article
Language:English
Published: Texas State University 1997-01-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/1997/05/abstr.html
id doaj-824f62d6cbf246be90a3645c6570b7b3
record_format Article
spelling doaj-824f62d6cbf246be90a3645c6570b7b32020-11-24T22:30:18ZengTexas State UniversityElectronic Journal of Differential Equations1072-66911997-01-01199705111On Neumann boundary value problems for some quasilinear elliptic equationsPaul A. BindingPavel DrabekYin Xi Huangfunction $a(x)$ on the existence of positive solutions to the problem $$left{ eqalign{ -{ m div},(|abla u|^{p-2}abla u)&= lambda a(x)|u|^{p-2}u+b(x)|u|^{gamma-2}u, quad xinOmega, cr x{partial u overpartial n}&=0, quad xinpartialOmega,,} ight. $$ where $Omega$ is a smooth bounded domain in $R^n$, $b$ changes sign, $1<p<N$, $1<gamma<Np/(N-p)$ and $gammae p$. We prove that (i) if $int_Omega a(x), dxe 0$ and $b$ satisfies another integral condition, then there exists some $lambda^*$ such that $lambda^* int_Omega a(x), dx<0$ and, for $lambda$ strictly between 0 and $lambda^*$, the problem has a positive solution. (ii) if $int_Omega a(x), dx=0$, then the problem has a positive solution for small $lambda$ provided that $int_Omega b(x),dx<0$. http://ejde.math.txstate.edu/Volumes/1997/05/abstr.htmlp-Laplacianpositive solutionsNeumann boundary value problems.
collection DOAJ
language English
format Article
sources DOAJ
author Paul A. Binding
Pavel Drabek
Yin Xi Huang
spellingShingle Paul A. Binding
Pavel Drabek
Yin Xi Huang
On Neumann boundary value problems for some quasilinear elliptic equations
Electronic Journal of Differential Equations
p-Laplacian
positive solutions
Neumann boundary value problems.
author_facet Paul A. Binding
Pavel Drabek
Yin Xi Huang
author_sort Paul A. Binding
title On Neumann boundary value problems for some quasilinear elliptic equations
title_short On Neumann boundary value problems for some quasilinear elliptic equations
title_full On Neumann boundary value problems for some quasilinear elliptic equations
title_fullStr On Neumann boundary value problems for some quasilinear elliptic equations
title_full_unstemmed On Neumann boundary value problems for some quasilinear elliptic equations
title_sort on neumann boundary value problems for some quasilinear elliptic equations
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 1997-01-01
description function $a(x)$ on the existence of positive solutions to the problem $$left{ eqalign{ -{ m div},(|abla u|^{p-2}abla u)&= lambda a(x)|u|^{p-2}u+b(x)|u|^{gamma-2}u, quad xinOmega, cr x{partial u overpartial n}&=0, quad xinpartialOmega,,} ight. $$ where $Omega$ is a smooth bounded domain in $R^n$, $b$ changes sign, $1<p<N$, $1<gamma<Np/(N-p)$ and $gammae p$. We prove that (i) if $int_Omega a(x), dxe 0$ and $b$ satisfies another integral condition, then there exists some $lambda^*$ such that $lambda^* int_Omega a(x), dx<0$ and, for $lambda$ strictly between 0 and $lambda^*$, the problem has a positive solution. (ii) if $int_Omega a(x), dx=0$, then the problem has a positive solution for small $lambda$ provided that $int_Omega b(x),dx<0$.
topic p-Laplacian
positive solutions
Neumann boundary value problems.
url http://ejde.math.txstate.edu/Volumes/1997/05/abstr.html
work_keys_str_mv AT paulabinding onneumannboundaryvalueproblemsforsomequasilinearellipticequations
AT paveldrabek onneumannboundaryvalueproblemsforsomequasilinearellipticequations
AT yinxihuang onneumannboundaryvalueproblemsforsomequasilinearellipticequations
_version_ 1725741741763461120