Equilibria and orbits in the dynamical environment of asteroid 22 Kalliope

This paper studies the orbital dynamics of the potential of asteroid 22 Kalliope using observational data of the irregular shape. The zero-velocity surface are calculated and showed with different Jacobian values. All five equilibrium points are found, four of them are outside and unstable, and the...

Full description

Bibliographic Details
Main Authors: Jiang Yu, Li Hengnian
Format: Article
Language:English
Published: De Gruyter 2019-09-01
Series:Open Astronomy
Subjects:
Online Access:https://doi.org/10.1515/astro-2019-0014
Description
Summary:This paper studies the orbital dynamics of the potential of asteroid 22 Kalliope using observational data of the irregular shape. The zero-velocity surface are calculated and showed with different Jacobian values. All five equilibrium points are found, four of them are outside and unstable, and the other one is inside and linearly stable. The movement and bifurcations of equilibrium points during the variety of rotation speed and density of the body are investigated. The Hopf bifurcations occurs during the variety of rotational speed from ω=1.0ω0 to 0.5ω0, and the Saddle-Node bifurcation occurs during the variety of rotational speed from ω=1.0ω0 to 2.0ω0. Both unstable and stable resonant periodic orbits around Kalliope are coexisting. The perturbation of an unstable periodic orbit shows that the gravitational field of Kalliope is strongly perturbed.
ISSN:2543-6376