Analysis and Compensation for Lateral Chromatic Aberration in a Color Coding Structured Light 3D Measurement System

While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyze...

Full description

Bibliographic Details
Main Authors: Junhui Huang, Qi Xue, Zhao Wang, Jianmin Gao
Format: Article
Language:English
Published: MDPI AG 2016-09-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/16/9/1426
Description
Summary:While color-coding methods have improved the measuring efficiency of a structured light three-dimensional (3D) measurement system, they decreased the measuring accuracy significantly due to lateral chromatic aberration (LCA). In this study, the LCA in a structured light measurement system is analyzed, and a method is proposed to compensate the error caused by the LCA. Firstly, based on the projective transformation, a 3D error map of LCA is constructed in the projector images by using a flat board and comparing the image coordinates of red, green and blue circles with the coordinates of white circles at preselected sample points within the measurement volume. The 3D map consists of the errors, which are the equivalent errors caused by LCA of the camera and projector. Then in measurements, error values of LCA are calculated and compensated to correct the projector image coordinates through the 3D error map and a tri-linear interpolation method. Eventually, 3D coordinates with higher accuracy are re-calculated according to the compensated image coordinates. The effectiveness of the proposed method is verified in the following experiments.
ISSN:1424-8220