Physio-Microstructural Properties of Aerated Cement Slurry for Lightweight Structures

Cementitious composites, including ferrocement and continuous fiber reinforced cement, are increasingly considered for building construction and repair. One alternative in processing of these composites is to infiltrate the reinforcement (continuous fibers or chicken mesh) with a flowable cementitio...

Full description

Bibliographic Details
Main Authors: Areej T. Almalkawi, Talal Salem, Sameer Hamadna, A. G. N. D. Darsanasiri, Parviz Soroushian, Anagi Balchandra, Ghassan Al-Chaar
Format: Article
Language:English
Published: MDPI AG 2018-04-01
Series:Materials
Subjects:
Online Access:http://www.mdpi.com/1996-1944/11/4/597
Description
Summary:Cementitious composites, including ferrocement and continuous fiber reinforced cement, are increasingly considered for building construction and repair. One alternative in processing of these composites is to infiltrate the reinforcement (continuous fibers or chicken mesh) with a flowable cementitious slurry. The relatively high density of cementitious binders, when compared with polymeric binders, are a setback in efforts to introduce cementitious composites as lower-cost, fire-resistant, and durable alternatives to polymer composites. Aeration of the slurry is an effective means of reducing the density of cementitious composites. This approach, however, compromises the mechanical properties of cementitious binders. An experimental program was undertaken in order to assess the potential for production of aerated slurry with a desired balance of density, mechanical performance, and barrier qualities. The potential for nondestructive monitoring of strength development in aerated cementitious slurry was also investigated. This research produced aerated slurries with densities as low as 0.9 g/cm3 with viable mechanical and barrier qualities for production of composites. The microstructure of these composites was also investigated.
ISSN:1996-1944