Advances in Antibacterial Functionalized Coatings on Mg and Its Alloys for Medical Use—A Review

As a revolutionary implant material, magnesium and its alloys have many exciting performances, such as biodegradability, mechanical compatibility, and excellent biosecurity. However, the rapid and uncontrollable degradation rate of magnesium greatly hampers its clinical use. Many efforts have been t...

Full description

Bibliographic Details
Main Authors: Dan Zhang, Ying Liu, Zhaogang Liu, Qiang Wang
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Coatings
Subjects:
Online Access:https://www.mdpi.com/2079-6412/10/9/828
Description
Summary:As a revolutionary implant material, magnesium and its alloys have many exciting performances, such as biodegradability, mechanical compatibility, and excellent biosecurity. However, the rapid and uncontrollable degradation rate of magnesium greatly hampers its clinical use. Many efforts have been taken to enhance the corrosion resistance of magnesium. However, it must be noted that improving the corrosion resistance of magnesium will lead to the compromise of its antibacterial abilities, which are attribute and proportional to the alkaline pH during its degradation. Providing antibacterial functionalized coating is one of the best methods for balancing the degradation rate and the antibacterial ability of magnesium. Antibacterial functionalized magnesium is especially well-suited for patients with diabetes and infected wounds. Considering the extremely complex biological environment in the human body and the demands of enhancing corrosion resistance, biocompatibility, osteogenesis, and antibacterial ability, composite coatings with combined properties of different materials may be promising. The aim of this review isto collect and compare recent studies on antibacterial functionalized coatings on magnesium and its alloys. The clinical applications of antibacterial functionalized coatings and their material characteristics, antibacterial abilities, in vitro cytocompatibility, and corrosion resistance are also discussed in detail.
ISSN:2079-6412