Human ghrelin mitigates intestinal injury and mortality after whole body irradiation in rats.

Widespread use of ionizing radiation has led to the realization of the danger associated with radiation exposure. Although studies in radiation countermeasures were initiated a half century ago, an effective therapy for a radiomitigator has not been identified. Ghrelin is a gastrointestinal hormone,...

Full description

Bibliographic Details
Main Authors: Zhimin Wang, Weng Lang Yang, Asha Jacob, Monowar Aziz, Ping Wang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4325005?pdf=render
id doaj-8352551f9b334fcbb5227d284f9935ee
record_format Article
spelling doaj-8352551f9b334fcbb5227d284f9935ee2020-11-24T21:35:48ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01102e011821310.1371/journal.pone.0118213Human ghrelin mitigates intestinal injury and mortality after whole body irradiation in rats.Zhimin WangWeng Lang YangAsha JacobMonowar AzizPing WangWidespread use of ionizing radiation has led to the realization of the danger associated with radiation exposure. Although studies in radiation countermeasures were initiated a half century ago, an effective therapy for a radiomitigator has not been identified. Ghrelin is a gastrointestinal hormone, and administration of ghrelin is protective in animal models of injuries including radiation combined injury. To test whether ghrelin can be protective in whole body irradiaton (WBI) alone, male Sprague Dawley (SD) rats were treated with human ghrelin (20 nmol/rat) daily for 6 days starting at either 24 h or 48 h after 10 Gray (Gy) WBI and survival outcome was examined. The 10 Gy WBI produced a LD70/30 model in SD rats (30% survival in 30 days). The survival rate in rats treated with ghrelin starting at 24 h was significantly improved to 63% and when treatment was initiated at 48 h, the survival remained at 61%. At 7 days post WBI, plasma ghrelin was significantly reduced from the control value. Ghrelin treatment starting at 24 h after WBI daily for 6 days improved histological appearance of the intestine, reduced gut permeability, serum endotoxin levels and bacterial translocation to the liver by 38%, 42% and 61%, respectively at day 7 post WBI. Serum glucose and albumin were restored to near control levels with treatment. Ghrelin treatment also attenuated WBI-induced intestinal apoptosis by 62% as evidenced by TUNEL staining. The expression of anti-apoptotic cell regulator Bcl-xl was decreased by 38% in the vehicle and restored to 75% of the control with ghrelin treatment. Increased expression of intestinal CD73 and pAkt were observed with ghrelin treatment, indicating protection of the intestinal epithelium after WBI. These results indicate that human ghrelin attenuates intestinal injury and mortality after WBI. Thus, human ghrelin can be developed as a novel mitigator for radiation injury.http://europepmc.org/articles/PMC4325005?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Zhimin Wang
Weng Lang Yang
Asha Jacob
Monowar Aziz
Ping Wang
spellingShingle Zhimin Wang
Weng Lang Yang
Asha Jacob
Monowar Aziz
Ping Wang
Human ghrelin mitigates intestinal injury and mortality after whole body irradiation in rats.
PLoS ONE
author_facet Zhimin Wang
Weng Lang Yang
Asha Jacob
Monowar Aziz
Ping Wang
author_sort Zhimin Wang
title Human ghrelin mitigates intestinal injury and mortality after whole body irradiation in rats.
title_short Human ghrelin mitigates intestinal injury and mortality after whole body irradiation in rats.
title_full Human ghrelin mitigates intestinal injury and mortality after whole body irradiation in rats.
title_fullStr Human ghrelin mitigates intestinal injury and mortality after whole body irradiation in rats.
title_full_unstemmed Human ghrelin mitigates intestinal injury and mortality after whole body irradiation in rats.
title_sort human ghrelin mitigates intestinal injury and mortality after whole body irradiation in rats.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2015-01-01
description Widespread use of ionizing radiation has led to the realization of the danger associated with radiation exposure. Although studies in radiation countermeasures were initiated a half century ago, an effective therapy for a radiomitigator has not been identified. Ghrelin is a gastrointestinal hormone, and administration of ghrelin is protective in animal models of injuries including radiation combined injury. To test whether ghrelin can be protective in whole body irradiaton (WBI) alone, male Sprague Dawley (SD) rats were treated with human ghrelin (20 nmol/rat) daily for 6 days starting at either 24 h or 48 h after 10 Gray (Gy) WBI and survival outcome was examined. The 10 Gy WBI produced a LD70/30 model in SD rats (30% survival in 30 days). The survival rate in rats treated with ghrelin starting at 24 h was significantly improved to 63% and when treatment was initiated at 48 h, the survival remained at 61%. At 7 days post WBI, plasma ghrelin was significantly reduced from the control value. Ghrelin treatment starting at 24 h after WBI daily for 6 days improved histological appearance of the intestine, reduced gut permeability, serum endotoxin levels and bacterial translocation to the liver by 38%, 42% and 61%, respectively at day 7 post WBI. Serum glucose and albumin were restored to near control levels with treatment. Ghrelin treatment also attenuated WBI-induced intestinal apoptosis by 62% as evidenced by TUNEL staining. The expression of anti-apoptotic cell regulator Bcl-xl was decreased by 38% in the vehicle and restored to 75% of the control with ghrelin treatment. Increased expression of intestinal CD73 and pAkt were observed with ghrelin treatment, indicating protection of the intestinal epithelium after WBI. These results indicate that human ghrelin attenuates intestinal injury and mortality after WBI. Thus, human ghrelin can be developed as a novel mitigator for radiation injury.
url http://europepmc.org/articles/PMC4325005?pdf=render
work_keys_str_mv AT zhiminwang humanghrelinmitigatesintestinalinjuryandmortalityafterwholebodyirradiationinrats
AT wenglangyang humanghrelinmitigatesintestinalinjuryandmortalityafterwholebodyirradiationinrats
AT ashajacob humanghrelinmitigatesintestinalinjuryandmortalityafterwholebodyirradiationinrats
AT monowaraziz humanghrelinmitigatesintestinalinjuryandmortalityafterwholebodyirradiationinrats
AT pingwang humanghrelinmitigatesintestinalinjuryandmortalityafterwholebodyirradiationinrats
_version_ 1725943946549395456