3D scanning probe nanotomography of tissue spheroid fibroblasts interacting with electrospun polyurethane scaffold

We present a 3D study of nanostructural features of a bioprinted tissue spheroid interacting with polyurethane dual-scale biocompatible scaffold manufactured by three-dimensional printing and electrospinning. Three-dimensional analysis of fibroblasts interacting with electrospun polyurethane fibers...

Full description

Bibliographic Details
Main Authors: A. E. Efimov, O. I. Agapova, L. A. Safonova, M. M. Bobrova, V. A. Parfenov, E. V. Koudan, F. D. A. S. Pereira, E. A. Bulanova, V. A. Mironov, I. I. Agapov
Format: Article
Language:English
Published: Budapest University of Technology 2019-07-01
Series:eXPRESS Polymer Letters
Subjects:
Online Access:http://www.expresspolymlett.com/letolt.php?file=EPL-0009811&mi=cd
Description
Summary:We present a 3D study of nanostructural features of a bioprinted tissue spheroid interacting with polyurethane dual-scale biocompatible scaffold manufactured by three-dimensional printing and electrospinning. Three-dimensional analysis of fibroblasts interacting with electrospun polyurethane fibers was conducted using scanning probe nanotomography with an experimental setup combining ultramicrotome and a scanning probe microscope. Three-dimensional reconstruction demonstrates direct visualization of cell membrane protrusions and coherent cell-fiber interfaces, the formation of which is a prerequisite for an efficient tissue engineered implant. Analysis of obtained 3D data allows for quantitative calculation of the important morphological parameters of adhered cells, scaffolds, and cell-scaffold interfaces. The proposed method may be successfully applied to investigate 3D cell-scaffold constructs at nanoscale.
ISSN:1788-618X