In Situ Synthesis of Vertical Standing Nanosized NiO Encapsulated in Graphene as Electrodes for High‐Performance Supercapacitors

Abstract NiO is a promising electrode material for supercapacitors. Herein, the novel vertically standing nanosized NiO encapsulated in graphene layers (G@NiO) are rationally designed and synthesized as nanosheet arrays. This unique vertical standing structure of G@NiO nanosheet arrays can enlarge t...

Full description

Bibliographic Details
Main Authors: Jinghuang Lin, Henan Jia, Haoyan Liang, Shulin Chen, Yifei Cai, Junlei Qi, Chaoqun Qu, Jian Cao, Weidong Fei, Jicai Feng
Format: Article
Language:English
Published: Wiley 2018-03-01
Series:Advanced Science
Subjects:
NiO
Online Access:https://doi.org/10.1002/advs.201700687
Description
Summary:Abstract NiO is a promising electrode material for supercapacitors. Herein, the novel vertically standing nanosized NiO encapsulated in graphene layers (G@NiO) are rationally designed and synthesized as nanosheet arrays. This unique vertical standing structure of G@NiO nanosheet arrays can enlarge the accessible surface area with electrolytes, and has the benefits of short ion diffusion path and good charge transport. Further, an interconnected graphene conductive network acts as binder to encapsulate the nanosized NiO particles as core–shell structure, which can promote the charge transport and maintain the structural stability. Consequently, the optimized G@NiO hybrid electrodes exhibit a remarkably enhanced specific capacity up to 1073 C g−1 and excellent cycling stability. This study provides a facial strategy to design and construct high‐performance metal oxides for energy storage.
ISSN:2198-3844