New inclusion sets for singular values
Abstract In this paper, for a given matrix A = ( a i j ) ∈ C n × n $A=(a_{ij}) \in\mathbb{C}^{n\times n}$ , in terms of r i $r_{i}$ and c i $c_{i}$ , where r i = ∑ j = 1 , j ≠ i n | a i j | $r_{i} = \sum _{j = 1,j \ne i}^{n} {\vert {a_{ij} } \vert }$ , c i = ∑ j = 1 , j ≠ i n | a j i | $c_{i} = \sum...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-03-01
|
Series: | Journal of Inequalities and Applications |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13660-017-1337-8 |
id |
doaj-83a63d331467494190ef0e6d9130018e |
---|---|
record_format |
Article |
spelling |
doaj-83a63d331467494190ef0e6d9130018e2020-11-25T00:49:12ZengSpringerOpenJournal of Inequalities and Applications1029-242X2017-03-01201711810.1186/s13660-017-1337-8New inclusion sets for singular valuesJun He0Yan-Min Liu1Jun-Kang Tian2Ze-Rong Ren3School of Mathematics, Zunyi Normal CollegeSchool of Mathematics, Zunyi Normal CollegeSchool of Mathematics, Zunyi Normal CollegeSchool of Mathematics, Zunyi Normal CollegeAbstract In this paper, for a given matrix A = ( a i j ) ∈ C n × n $A=(a_{ij}) \in\mathbb{C}^{n\times n}$ , in terms of r i $r_{i}$ and c i $c_{i}$ , where r i = ∑ j = 1 , j ≠ i n | a i j | $r_{i} = \sum _{j = 1,j \ne i}^{n} {\vert {a_{ij} } \vert }$ , c i = ∑ j = 1 , j ≠ i n | a j i | $c_{i} = \sum _{j = 1,j \ne i}^{n} {\vert {a_{ji} } \vert }$ , some new inclusion sets for singular values of the matrix are established. It is proved that the new inclusion sets are tighter than the Geršgorin-type sets (Qi in Linear Algebra Appl. 56:105-119, 1984) and the Brauer-type sets (Li in Comput. Math. Appl. 37:9-15, 1999). A numerical experiment shows the efficiency of our new results.http://link.springer.com/article/10.1186/s13660-017-1337-8singular valuematrixinclusion sets |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jun He Yan-Min Liu Jun-Kang Tian Ze-Rong Ren |
spellingShingle |
Jun He Yan-Min Liu Jun-Kang Tian Ze-Rong Ren New inclusion sets for singular values Journal of Inequalities and Applications singular value matrix inclusion sets |
author_facet |
Jun He Yan-Min Liu Jun-Kang Tian Ze-Rong Ren |
author_sort |
Jun He |
title |
New inclusion sets for singular values |
title_short |
New inclusion sets for singular values |
title_full |
New inclusion sets for singular values |
title_fullStr |
New inclusion sets for singular values |
title_full_unstemmed |
New inclusion sets for singular values |
title_sort |
new inclusion sets for singular values |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1029-242X |
publishDate |
2017-03-01 |
description |
Abstract In this paper, for a given matrix A = ( a i j ) ∈ C n × n $A=(a_{ij}) \in\mathbb{C}^{n\times n}$ , in terms of r i $r_{i}$ and c i $c_{i}$ , where r i = ∑ j = 1 , j ≠ i n | a i j | $r_{i} = \sum _{j = 1,j \ne i}^{n} {\vert {a_{ij} } \vert }$ , c i = ∑ j = 1 , j ≠ i n | a j i | $c_{i} = \sum _{j = 1,j \ne i}^{n} {\vert {a_{ji} } \vert }$ , some new inclusion sets for singular values of the matrix are established. It is proved that the new inclusion sets are tighter than the Geršgorin-type sets (Qi in Linear Algebra Appl. 56:105-119, 1984) and the Brauer-type sets (Li in Comput. Math. Appl. 37:9-15, 1999). A numerical experiment shows the efficiency of our new results. |
topic |
singular value matrix inclusion sets |
url |
http://link.springer.com/article/10.1186/s13660-017-1337-8 |
work_keys_str_mv |
AT junhe newinclusionsetsforsingularvalues AT yanminliu newinclusionsetsforsingularvalues AT junkangtian newinclusionsetsforsingularvalues AT zerongren newinclusionsetsforsingularvalues |
_version_ |
1725252407205560320 |