New inclusion sets for singular values

Abstract In this paper, for a given matrix A = ( a i j ) ∈ C n × n $A=(a_{ij}) \in\mathbb{C}^{n\times n}$ , in terms of r i $r_{i}$ and c i $c_{i}$ , where r i = ∑ j = 1 , j ≠ i n | a i j | $r_{i} = \sum _{j = 1,j \ne i}^{n} {\vert {a_{ij} } \vert }$ , c i = ∑ j = 1 , j ≠ i n | a j i | $c_{i} = \sum...

Full description

Bibliographic Details
Main Authors: Jun He, Yan-Min Liu, Jun-Kang Tian, Ze-Rong Ren
Format: Article
Language:English
Published: SpringerOpen 2017-03-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-017-1337-8
id doaj-83a63d331467494190ef0e6d9130018e
record_format Article
spelling doaj-83a63d331467494190ef0e6d9130018e2020-11-25T00:49:12ZengSpringerOpenJournal of Inequalities and Applications1029-242X2017-03-01201711810.1186/s13660-017-1337-8New inclusion sets for singular valuesJun He0Yan-Min Liu1Jun-Kang Tian2Ze-Rong Ren3School of Mathematics, Zunyi Normal CollegeSchool of Mathematics, Zunyi Normal CollegeSchool of Mathematics, Zunyi Normal CollegeSchool of Mathematics, Zunyi Normal CollegeAbstract In this paper, for a given matrix A = ( a i j ) ∈ C n × n $A=(a_{ij}) \in\mathbb{C}^{n\times n}$ , in terms of r i $r_{i}$ and c i $c_{i}$ , where r i = ∑ j = 1 , j ≠ i n | a i j | $r_{i} = \sum _{j = 1,j \ne i}^{n} {\vert {a_{ij} } \vert }$ , c i = ∑ j = 1 , j ≠ i n | a j i | $c_{i} = \sum _{j = 1,j \ne i}^{n} {\vert {a_{ji} } \vert }$ , some new inclusion sets for singular values of the matrix are established. It is proved that the new inclusion sets are tighter than the Geršgorin-type sets (Qi in Linear Algebra Appl. 56:105-119, 1984) and the Brauer-type sets (Li in Comput. Math. Appl. 37:9-15, 1999). A numerical experiment shows the efficiency of our new results.http://link.springer.com/article/10.1186/s13660-017-1337-8singular valuematrixinclusion sets
collection DOAJ
language English
format Article
sources DOAJ
author Jun He
Yan-Min Liu
Jun-Kang Tian
Ze-Rong Ren
spellingShingle Jun He
Yan-Min Liu
Jun-Kang Tian
Ze-Rong Ren
New inclusion sets for singular values
Journal of Inequalities and Applications
singular value
matrix
inclusion sets
author_facet Jun He
Yan-Min Liu
Jun-Kang Tian
Ze-Rong Ren
author_sort Jun He
title New inclusion sets for singular values
title_short New inclusion sets for singular values
title_full New inclusion sets for singular values
title_fullStr New inclusion sets for singular values
title_full_unstemmed New inclusion sets for singular values
title_sort new inclusion sets for singular values
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2017-03-01
description Abstract In this paper, for a given matrix A = ( a i j ) ∈ C n × n $A=(a_{ij}) \in\mathbb{C}^{n\times n}$ , in terms of r i $r_{i}$ and c i $c_{i}$ , where r i = ∑ j = 1 , j ≠ i n | a i j | $r_{i} = \sum _{j = 1,j \ne i}^{n} {\vert {a_{ij} } \vert }$ , c i = ∑ j = 1 , j ≠ i n | a j i | $c_{i} = \sum _{j = 1,j \ne i}^{n} {\vert {a_{ji} } \vert }$ , some new inclusion sets for singular values of the matrix are established. It is proved that the new inclusion sets are tighter than the Geršgorin-type sets (Qi in Linear Algebra Appl. 56:105-119, 1984) and the Brauer-type sets (Li in Comput. Math. Appl. 37:9-15, 1999). A numerical experiment shows the efficiency of our new results.
topic singular value
matrix
inclusion sets
url http://link.springer.com/article/10.1186/s13660-017-1337-8
work_keys_str_mv AT junhe newinclusionsetsforsingularvalues
AT yanminliu newinclusionsetsforsingularvalues
AT junkangtian newinclusionsetsforsingularvalues
AT zerongren newinclusionsetsforsingularvalues
_version_ 1725252407205560320