Bifurcation Analysis in Population Genetics Model with Partial Selfing

A new model which allows both the effect of partial selfing selection and an exponential function of the expected payoff is considered. This combines ideas from genetics and evolutionary game theory. The aim of this work is to study the effects of partial selfing selection on the discrete dyna...

Full description

Bibliographic Details
Main Authors: Yingying Jiang, Wendi Wang
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2013/164504
Description
Summary:A new model which allows both the effect of partial selfing selection and an exponential function of the expected payoff is considered. This combines ideas from genetics and evolutionary game theory. The aim of this work is to study the effects of partial selfing selection on the discrete dynamics of population evolution. It is shown that the system undergoes period doubling bifurcation, saddle-node bifurcation, and Neimark-Sacker bifurcation by using center manifold theorem and bifurcation theory. Numerical simulations are presented not only to illustrate our results with the theoretical analysis, but also to exhibit the complex dynamical behaviors, such as the period-3, 6 orbits, cascade of period-doubling bifurcation in period-2, 4, 8, and the chaotic sets. These results reveal richer dynamics of the discrete model compared with the model in Tao et al., 1999. The analysis and results in this paper are interesting in mathematics and biology.
ISSN:1085-3375
1687-0409